

Mitigating Overconfidence in Bayesian Field Inversion thanks to Hyperparameters Sampling UQSAY #77

PhD student: Nadège Polette^{1,2}, Supervisors: Alexandrine Gesret¹, Pierre Sochala², Olivier Le Maître³

 $^1{\rm Mines}$ Paris PSL, Geosciences center, Fontainebleau, France $^2{\rm CEA},$ DAM, DIF, F-91297 Arpajon, France $^3{\rm CNRS},$ CMAP, IPP École Polytechnique, Palaiseau, France

Table of contents

Context

Detection and analysis of seismic events Inverse problem Bayesian inference and Markov Chain Monte Carlo

Field parametrization

Change of measure

Surrogate model

Application to seismic tomography

••• 1. Context: Detection and analysis of seismic events

••• 1. Context: Inverse problem

Uncertainty sources: observations, physical model, model parameters,... **Objective:** improve **uncertainty quantification** of model parameters

Tarantola, SIAM, 2005; Noble et al., GJI, 2014

•• 1. Context: Inverse problem

Objective: to characterize the velocity field m and its uncertainty from indirect observations d \Rightarrow to find the probability distribution of the field knowing the observations $\pi_{\text{post}}(m|\boldsymbol{d}^{\text{obs}})$

Tarantola, SIAM, 2005; Noble et al., GJI, 2014

••• 1. Context: Bayesian inference and Markov chain Monte Carlo

Sivia and Skilling, Oxford, 2006; Doucet et al., Springer NY, 2013

••• 1. Context: Bayesian inference and Markov chain Monte Carlo

Sivia and Skilling, Oxford, 2006; Doucet et al., Springer NY, 2013

••• 1. Context: Bayesian inference and Markov chain Monte Carlo

Sivia and Skilling, Oxford, 2006; Doucet et al., Springer NY, 2013

Table of contents

Context

Field parametrization Type of parametrizations

Karhunen–Loève decomposition

Change of measure

Surrogate model

Application to seismic tomography

9. 2. Field parametrization: Spatial mesh

m(x)

 $\forall x \in [x_i, x_{i+1}], m(x) = m_i$ Parameters: $\{m_i\}_{1 \leq i \leq N_{\text{meshes}}}$

- "small" dimension
- ✓ fixed dimension
- \checkmark allowing for various shapes

2. Field parametrization: Layered velocity model

Cez

2. Field parametrization: Voronoï tesselation

Bodin et al., *GJI*, 2012; Piana Agostinetti et al., *GJI*, 2015; Belhadj et al., *Inverse Problems*, 2018 UQSAY #77 - POLETTE Nadège 31/10/2024

2. Field parametrization: Voronoï tesselation

2. Field parametrization: Modal representation

$$orall x,\ m(x) = \sum\limits_{i=1}^r U_i(x) w_i$$

Parameters: $\{w_i\}_{1\leqslant i\leqslant r}$

- ☑ fixed dimension
- allowing for various shapes

<u>cea</u>

m(x)

Marzouk and Najm, JCP, 2009

2. Field parametrization: Karhunen-loève decomposition

12

Assuming *m* is the realization of a **random process** with autocovariance function *k*, $m \sim GP(0, k)$

$$m(x) = \sum_{i=1}^r \sqrt{\lambda_i} u_i(x) \eta_i$$

 $(\lambda_i, u_i)_{1 \leq i \leq r}$ eigenelements of k: $\langle k(x, \cdot), u_i \rangle = \int_{\Omega} k(x, y) u_i(y) dy = \lambda_i u_i(x)$ The decomposition is **bi-orthonormal**:

- $\langle u_i, u_j \rangle = \delta_{i,j}$
- $\mathbb{E}(\eta_i) = 0$ and $\mathbb{E}(\eta_i \eta_j) = \delta_{i,j}$

In the case of a Gaussian process, $\eta \sim \mathcal{N}(0,\mathrm{I}_r)$

Karhunen, Ann. Acad. Sci. Fenn., 1946; Loève, Springer NY, 1977; Marzouk and Najm, JCP, 2009 UQSAY #77 - POLETTE Nadège 31/10/2024

2. Field parametrization: Karhunen-loève decomposition

Assuming *m* is the realization of a **random process** with autocovariance function *k*, $m \sim GP(0, k)$

13

 Karhunen, Ann. Acad. Sci. Fenn., 1946;
 Loève, Springer NY, 1977;
 Marzouk and Najm, JCP, 2009

 UQSAY #77 - POLETTE Nadège
 31/10/2024

2. Field parametrization: Karhunen-loève decomposition

Table of contents

Context

Field parametrization

Change of measure

Objective Reference basis Formulation Sampling Summary

Surrogate model

Application to seismic tomography

POLETTE Nadège - UQSAY #77

31/10/2024

•••• 3. Change of measure: Objective

- **Squared exponential** autocovariance function: $k(x, y) = A \exp\left(-\frac{||x y||^2}{2l^2}\right)$
- Hyperparameters $\boldsymbol{q} = \{A, I\} \Rightarrow m(x) = \sum_{i=1}^{r} \sqrt{\lambda_i(\boldsymbol{q})} u_i(x, \boldsymbol{q}) \eta_i$

•••• 3. Change of measure: Objective

Squared exponential autocovariance function: $k(x, y) = A \exp\left(-\frac{||x - y||^2}{(2l^2)}\right)$

• Hyperparameters
$$\boldsymbol{q} = \{A, I\} \Rightarrow m(x) = \sum_{i=1}^{r} \sqrt{\lambda_i(\boldsymbol{q})} u_i(x, \boldsymbol{q}) \eta_i$$

Field realizations

- Hyperparameters are determined a priori → expert judgement, MSE, LOOCV... Overconfidence risk
- Hyperparameters are inferred during the procedure \rightarrow Bayes' rule: $\pi_{\text{post}}(\eta, \boldsymbol{q} | \boldsymbol{d}^{\text{obs}}) \propto \mathcal{L}(\boldsymbol{d}^{\text{obs}} | \eta, \boldsymbol{q}) \pi_{\text{prior}}(\eta, \boldsymbol{q})$ *Expensive*

Objective: develop a cheap method to take into account hyperparameters

Small /

Rasmussen and Williams, *The MIT Press*, 2005; Pion and Vazquez, *LOD 2024*, 2024 Tagade and Choi, *IPSE*, 2014; Sraj et al., *CMAME*, 2016

3. Change of measure: Reference basis

Reference kernel

$$\overline{k} = \int_{\mathbb{H}} k(\cdot, \cdot, \boldsymbol{q}) \pi_{\text{prior}}(\boldsymbol{q}) d\boldsymbol{q}$$

Reference basis $(\overline{\lambda}_i, \overline{u}_i)_{1 \leqslant i \leqslant r} \rightarrow \text{eigenelements of } \overline{k}: \int_{\Omega} \overline{k}(x, y) \overline{u}_i(y) dy = \overline{\lambda}_i \overline{u}_i(x)$

Field decomposition

$$m(x) = \sum_{i=1}^r \sqrt{\overline{\lambda}_i} \overline{u}_i(x) \xi_i$$

Hierarchical Bayes formulation

$$\pi_{ ext{post}}(oldsymbol{\xi},oldsymbol{q}|oldsymbol{d}^{ ext{obs}}) \propto \mathcal{L}(oldsymbol{d}^{ ext{obs}}|oldsymbol{\xi})\pi_{ ext{prior}}(oldsymbol{\xi},oldsymbol{q}) = \mathcal{L}(oldsymbol{d}^{ ext{obs}}|oldsymbol{\xi})\pi_{ ext{prior}}(oldsymbol{\xi}|oldsymbol{q})\pi_{ ext{prior}}(oldsymbol{\xi})$$

 \Rightarrow The \emph{q} -dependency is transferred to the prior law of the coordinates $\emph{\xi}$

Sraj et al., CMAME, 2016; Polette et al., in Rev., 2024

How to define $\pi_{\text{prior}}(\boldsymbol{\xi}|\boldsymbol{q})$?

3. Change of measure: Formulation

Prior law of the reference coordinates according to the hyperparameters

$$m(x) = \sum_{i=1}^{r} \sqrt{\overline{\lambda}_{i}} \overline{u}_{i}(x) \xi_{i}, \quad \boldsymbol{\xi} \sim \mathcal{N}\left(0, \boldsymbol{\Sigma}(\boldsymbol{q})\right) \text{ with } \boldsymbol{\Sigma}(\boldsymbol{q})_{ij} = \left(\overline{\lambda}_{i} \overline{\lambda}_{j}\right)^{-1/2} \left\langle \left\langle k(\cdot, \cdot, \boldsymbol{q}), \ \overline{u}_{i} \right\rangle, \ \overline{u}_{j} \right\rangle$$

 $\Sigma(\boldsymbol{q})$ is the double projection of the \boldsymbol{q} -dependent kernel on the reference basis

(a) Eigenvalues decay according to the basis

10 10⁰ l = 10Σ(I)_{ii} l = 50+ 1 = 10010⁻¹ 10⁻² 0 10 20 30 50 60 40 Eigenvalue number i

(b) Variance of ξ according to I

Polette et al., in Rev., 2024 UQSAY #77 - POLETTE Nadège

3. Change of measure: Formulation

Objective: Find $\pi_{\text{prior}}(\boldsymbol{\xi}|\boldsymbol{q})$ such that

$$\sum_{i=1}^r \sqrt{\overline{\lambda}_i} \overline{u}_i \xi_i \simeq \sum_{j=1}^{+\infty} \sqrt{\lambda_j(\boldsymbol{q})} u_j(\boldsymbol{q}) \eta_j$$

Projection on the reference modes:

$$\sqrt{\overline{\lambda}_i}\xi_i = \sum_{j=1}^{+\infty} \sqrt{\lambda_j(oldsymbol{q})} ig\langle u_j(oldsymbol{q}), \,\, \overline{u}_i ig
angle \, \eta_j$$

Since $\eta \sim \mathcal{N}(0,\mathrm{I})$, $\pmb{\xi}$ is Gaussian with $\mathbb{E}(\pmb{\xi})=0$ and, using Mercer's theorem,

$$\begin{split} \boldsymbol{\Sigma}(\boldsymbol{q})_{ij} &= \mathbb{E}(\xi_i \xi_j) = \left(\overline{\lambda}_i \overline{\lambda}_j\right)^{-1/2} \left\langle \left\langle \sum_{k=1}^{+\infty} \lambda_k(\boldsymbol{q}) u_k(\boldsymbol{x}, \boldsymbol{q}) u_k(\boldsymbol{y}, \boldsymbol{q}), \ \overline{u}_i \right\rangle, \ \overline{u}_j \right\rangle \\ &= \left(\overline{\lambda}_i \overline{\lambda}_j\right)^{-1/2} \left\langle \left\langle k(\cdot, \cdot, \boldsymbol{q}), \ \overline{u}_i \right\rangle, \ \overline{u}_j \right\rangle \end{split}$$

Polette et al., in Rev., 2024

UQSAY #77 - POLETTE Nadège

3. Change of measure: Sampling

Hierarchical sampling: $\boldsymbol{\xi} \sim \mathcal{N}(0, \Sigma(\boldsymbol{q}))$, the prior distribution of $\boldsymbol{\xi}$ can be highly sensitive to \boldsymbol{q}

 $\Sigma({m q})$ covariance projected on $({m \xi}_{16},{m \xi}_{18})$

Betancourt and Girolami, arXiv, 2013

UQSAY #77 - POLETTE Nadège

 \Rightarrow Introduction of an **auxiliary variable** ζ whose prior law does not depend on hyperparameters

- Sample $\boldsymbol{\zeta} \sim \mathcal{N}(0, \mathrm{I}_r), \ \boldsymbol{q}$
- Compute $\boldsymbol{\xi} \sim \mathcal{N}(0, \boldsymbol{\Sigma}(\boldsymbol{q}))$ from $(\boldsymbol{\zeta}, \boldsymbol{q}),$ $\boldsymbol{\xi} = \boldsymbol{\Sigma}(\boldsymbol{q})^{1/2} \boldsymbol{\zeta}$

The proposition is not symmetric anymore Ratio of the transition probabilities:

$$\frac{p_t\left(\boldsymbol{\xi}^{(n)}, \boldsymbol{q}^{(n)} | \boldsymbol{\xi}^*, \boldsymbol{q}^*\right)}{p_t\left(\boldsymbol{\xi}^*, \boldsymbol{q}^* | \boldsymbol{\xi}^{(n)}, \boldsymbol{q}^{(n)}\right)} = \left(\frac{\det\left(\boldsymbol{\Sigma}(\boldsymbol{q}^*)\right)}{\det\left(\boldsymbol{\Sigma}(\boldsymbol{q}^{(n)})\right)}\right)^{1/2}$$

3. Change of measure: Summary

NO VO VX

Table of contents

Context

Field parametrization

Change of measure

Surrogate model Polynomial chaos construction Adaptive construction

Application to seismic tomography

POLETTE Nadège - UQSAY #77

• 4. Surrogate model: Polynomial chaos expansion

Polynomial chaos expansion (PCE)

$$\widetilde{F}(\boldsymbol{\xi}) = \sum_{a \in \mathcal{A}} f_a \Psi_a(\boldsymbol{\xi}) = \boldsymbol{d}$$

- \mathcal{A} : set of multi-indices *e.g.* {(0,1,0); (2,0,0); (1,0,3)}
- Ψ_a : product of orthonormal univariate polynomials:

$$\Psi_{a=(a_1,\ldots,a_r)}(m)=\prod_{i=1}\psi_{a_i}^i(\boldsymbol{\xi}_i)$$

- f_{a} : coefficients to compute
- PCE also used to approximate log det ($\Sigma(\boldsymbol{q})$), $\Sigma(\boldsymbol{q})^{-1/2}$, $\Sigma(\boldsymbol{q})^{1/2}$

Example with Hermite polynomials and $\alpha = \{1, 3, 0\}$

• 4. Surrogate model: Polynomial chaos expansion

Polynomial chaos expansion (PCE)

$$\widetilde{F}(oldsymbol{\xi}) = \sum_{a \in \mathcal{A}} f_a \Psi_a(oldsymbol{\xi}) = oldsymbol{d}$$

Non intrusive ordinary least squares approach

• Training set
$$\{\boldsymbol{\xi}^{(n)}\}_{1\leqslant n\leqslant N}\sim \pi_{\mathrm{prior}}(\boldsymbol{\xi}), \ N>>K=|\mathcal{A}|$$

- Training evaluations $oldsymbol{U}=\left(F(oldsymbol{\xi}^{(1)}),\ldots,F(oldsymbol{\xi}^{(N)})
 ight)^+$
- Polynomial evaluations at training points Ψ ∈ ℝ^{N×K}, Ψ_{ij} = ψ_j(ξ⁽ⁱ⁾)
- Vector of coefficients $\boldsymbol{f} = (f_1, \ldots, f_K)^\top$

$$\boldsymbol{f} = \left(\boldsymbol{\Psi}^{ op} \boldsymbol{\Psi}
ight)^{-1} \boldsymbol{\Psi}^{ op} \boldsymbol{U}$$

Number of polynomials according to surrogate degree n_o (r = 10) Full tensorization: $\max(n_{o,i}) \leq n_o$ Partial tensorization: $\sum_i n_{o,i} \leq n_o$

• 4. Surrogate model: Adaptive construction

Initial construction: does not ensure that the error on the posterior subspace is bounded

• Objective: minimize error
$$\mathbb{E}_{\pi_{\text{post}}}\left(\left\|\mathcal{L}(\boldsymbol{\xi}) - \widetilde{\mathcal{L}}(\boldsymbol{\xi})\right\|^2\right)$$

- Adaptive workflow:
 - Initial surrogate *L̃*⁽⁰⁾ with *X*⁽⁰⁾ = {*ξ*⁽ⁿ⁾}_{1≤n≤N} ~ π_{prior}
 While Convergence not achieved
 - MCMC with $\widetilde{\pi}_{\text{post}}^{(i)}$
 - $\blacksquare \ i \leftarrow i+1$
 - Update training set: $X^{(i)} = X^{(i-1)} \setminus X^{(i-1)}_{1 \leq k \leq n_r} \cup \{\xi^{(n)}\}_{1 \leq n \leq n_a}$
 - Update surrogate using centered rescaled training set
- Convergence check: surrogate quality

Cez

NO VO VA

Table of contents

Context

Field parametrization

Change of measure

Surrogate model

Application to seismic tomography

Case presentation Results without CoM Results with CoM Extension to 2D models

5. Results: Case presentation

- 2D velocity field, varies only along depth
- $\Omega = [0, 750]$ m, 23 stations \times 5 events, noise level 0.002s

• Velocity field:
$$v(x) = \exp\left(\mu + \sum_{i=1}^{r} \sqrt{\overline{\lambda_i}} \overline{u}_i(x) \xi_i\right)$$

• $I \sim U(10, 100), A \sim IG(21, 1), r = 20, \mu \sim U(6.9, 8.1)$

5. Results: with fixed hyperparameters

 \Rightarrow Using the same basis for both fields does not allow to distinguish them

5. Results: with the change of measure method

UQSAY #77 - POLETTE Nadège

5. Results: with the change of measure method

Large wavelength field

<u>cea</u>

Application to a steady state diffusion equation

- Forward model: $-\nabla \cdot (\kappa \nabla u) = f$
- Objective: Find $\pi_{\text{post}}(\kappa | \boldsymbol{d}_{\text{obs}})$, with $\boldsymbol{d}_{\text{obs}} = \{u(\boldsymbol{s}_i)\}_{1 \leqslant i \leqslant N_{\text{obs}}}$
- Prior parametrisation:
 - $\log \kappa \sim \mathcal{N}(\mathbf{0}, k)$

• *k* anisotropic Gaussian autocovariance function $\rightarrow k(x, y) = A \exp\left(-\frac{1}{2}(x-y)^{\top}K(x-y)\right)$, with $K = \mathcal{R}(\theta) \begin{pmatrix} 1/l_1^2 & 0\\ 0 & 1/l_2^2 \end{pmatrix} \mathcal{R}(\theta)^{T}$ • $A \approx IC(3, 1) - h \approx I/(0, 1, 0, 6) - h \approx I/(0, 1, 0, 6) - \theta \approx I/(0, \pi/2)$

• $A \sim \text{IG}(3,1), \ h_1 \sim \mathcal{U}(0.1,0.6), \ h_2 \sim \mathcal{U}(0.1,0.6), \ \theta \sim \mathcal{U}(0,\pi/2)$

Application to a steady state diffusion equation

- Forward model: $-\nabla \cdot (\kappa \nabla u) = f$
- Objective: Find $\pi_{\text{post}} (\kappa | \boldsymbol{d}_{\text{obs}})$, with $\boldsymbol{d}_{\text{obs}} = \{u(\boldsymbol{s}_i)\}_{1 \leqslant i \leqslant N_{\text{obs}}}$
- Prior parametrisation:
 - $\log \kappa \sim \mathcal{N}(\mathbf{0}, k)$
 - **a** k anisotropic Gaussian autocovariance function $\rightarrow k(x, y) = A \exp\left(-\frac{1}{2}(x-y)^{\top}K(x-y)\right)$, with $K = \mathcal{R}(\theta) \begin{pmatrix} 1/l_1^2 & 0\\ 0 & 1/l_2^2 \end{pmatrix} \mathcal{R}(\theta)^{T}$ **a** $A \sim IG(3,1), \ l_1 \sim \mathcal{U}(0.1, 0.6), \ l_2 \sim \mathcal{U}(0.1, 0.6), \ \theta \sim \mathcal{U}(0, \pi/2)$

(b) Mean posterior field

Application to a steady state diffusion equation

- Forward model: $-\nabla \cdot (\kappa \nabla u) = f$
- Objective: Find $\pi_{\text{post}} (\kappa | \boldsymbol{d}_{\text{obs}})$, with $\boldsymbol{d}_{\text{obs}} = \{u(\boldsymbol{s}_i)\}_{1 \leqslant i \leqslant N_{\text{obs}}}$
- Prior parametrisation:
 - $\log \kappa \sim \mathcal{N}(0, k)$
 - *k* anisotropic Gaussian autocovariance function $\rightarrow k(x, y) = A \exp\left(-\frac{1}{2}(x-y)^{\top}K(x-y)\right)$, with $K = \mathcal{R}(\theta) \begin{pmatrix} 1/l_1^2 & 0\\ 0 & 1/l_2^2 \end{pmatrix} \mathcal{R}(\theta)^{\top}$ • $A \sim IG(3, 1), \ h \sim \mathcal{U}(0.1, 0.6), \ h \sim \mathcal{U}(0.1, 0.6), \ \theta \sim \mathcal{U}(0, \pi/2)$

Conclusion

- Change of measure: efficient method for field inference
 - Dimension reduction
 - $\blacksquare \ \ \mathsf{Flexible} \ a \ priori \ \mathsf{parametrization} \ \to \ \mathsf{model} \ \mathsf{exploration}$
 - Without large computational cost increase

N. Polette, O. Le Maître, P. Sochala, A. Gesret, *Change of Measure for Bayesian Field Inversion with Hierarchical Hyperparameters Sampling*, in Rev. in JCP

- Uncertainty propagation to other quantities (*e.g.* location)
- Work in progress: development of adaptive methods
 - Adaptive PC using posterior sampling
 - \blacksquare Informed modes \bot Non-informed modes
 - A posteriori dimension reduction

Thank you !

nadege.polette@minesparis.psl.eu

Keywords: inverse problem, (hierarchical) Bayesian inference, surrogate models, MCMC, dimension reduction, KL decomposition