

Bayesian Inference for Inverse Problems with Hyperparameters Estimation of the Field Covariance Function

Nadège Polette^{1,2}, Pierre Sochala¹, Alexandrine Gesret², Olivier Le Maître³

PSLM ¹ CEA, DAM, DIF, F-91297 Arpajon, France ² Mines Paris PSL, Geosciences center, Fontainebleau, France ³ CMAP, CNRS, Inria, École Polytechnique, IPP, Palaiseau, France

PFE - November '22 - March '23, ENPC supervisor: Julien Reygner [CERMICS] February, 23rd 2023

Context

Detection and analysis of seismic events

Global scale

- International treaties (CTBT, NTP)
- Environment monitoring (IMS)

Regional scale

- Tsunami and seism alerts
- Risk prevention

Local scale

C07

- Knowledge of subsurface
- Exploitation

(a) Eikonal solver [Noble et al., 2011]

Cez

Context: seismic tomography Forward problem Velocity field f? Inverse problem ?

^(a) Eikonal solver [Noble et al., 2011]

Objective: Estimation of a field (*i*) accurate, (*ii*) with uncertainties, (*iii*) fast

Table of contents

Bayesian inference of a physical field

Change of measure method

Applications

Conclusion

Bayes formulation

Bayes rule: $p_{\text{post}}(f|\boldsymbol{d}^{\text{obs}}) \propto \mathcal{L}(\boldsymbol{d}^{\text{obs}}|f)\pi_{\mathcal{F}}(f).$

Markov Chain Monte–Carlo algorithm:

Bayes formulation

Bayes rule: $p_{\text{post}}(f|\boldsymbol{d}^{\text{obs}}) \propto \mathcal{L}(\boldsymbol{d}^{\text{obs}}|f)\pi_{\mathcal{F}}(f).$

Markov Chain Monte–Carlo algorithm:

 \Rightarrow Evaluation of \mathcal{M} ?

 \rightarrow Polynomial chaos surrogate [Marzouk et al., 2009]. Representation of f ?

Representation of the field

(a) Nodal representation

- Large number of parameters (expensive)
- × Interpolation needed
- Easy to implement

(b) Modal representation

- ✓ Few number of modes
- ✓ Defined on all the spatial domain
- \Rightarrow Implementation ?

Karhunen–Loève decomposition

 $f(\mathbf{x})$ is seen a particular *realization of a Gaussian process* $\mathcal{G} \sim \mathcal{N}(0, k)$, where k is the *autocovariance function* [Karhunen, Loève, 1946, 1977].

$$f(\boldsymbol{x}) = \mathcal{G}(\boldsymbol{x}, \theta) \simeq \sum_{i=1}^{r} \lambda_i^{1/2} u_i(\boldsymbol{x}) \eta_i(\theta), \text{ with } \eta_i = \lambda_i^{-1/2} \langle u_i, \mathcal{G} \rangle_{\Omega}$$

• $(u_i, \lambda_i)_{i \in \mathbb{N}^*}$ eigenelements of k:

$$\langle k(\mathbf{x},\cdot), u_i \rangle_{\Omega} := \int_{\Omega} k(\mathbf{x}, \mathbf{x}') u_i(\mathbf{x}') d\mathbf{x}' = \lambda_i u_i(\mathbf{x})$$

Bi-orthonormality of the decomposition:
 ∀i, j ∈ N*, u_i, u_j orthonormal, ⟨u_i, u_j⟩_Ω = δ_{i,j},
 η := (η_i)_{1≤i≤r} ~ N(0, I_r)

$$\Rightarrow
ho_{
m post}(f(\eta)|oldsymbol{d}^{
m obs}) \propto \mathcal{L}(oldsymbol{d}^{
m obs}|f)\pi(\eta).$$

Karhunen-Loève decomposition

ONLINE

- Representation of f ?
- Evaluation cost of \mathcal{M} ?

Karhunen-Loève decomposition

•
$$f(\boldsymbol{\eta}) = \sum_{i=1}^{r} \lambda_i^{1/2} u_i \eta_i$$
 with $\eta_i = \lambda_i^{-1/2} \langle u_i, \mathcal{G} \rangle_{\Omega}$

•
$$\widetilde{\mathcal{M}}(\boldsymbol{\eta}) = \sum_{\kappa} M_{\kappa} \psi_{\kappa}(\boldsymbol{\eta})$$

In reality, k depends on hyperparameters $oldsymbol{q} \in \mathbb{H}$: $\mathcal{G} \sim \mathcal{N}(0, k(oldsymbol{q}))$

Hyperparameters dependency

•
$$f(\boldsymbol{\eta}, \boldsymbol{q}) = \sum_{i=1}^{r} \lambda_i(\boldsymbol{q})^{1/2} u_i(\boldsymbol{q}) \eta_i$$
 with $\eta_i = \lambda_i(\boldsymbol{q})^{-1/2} \langle u_i(\boldsymbol{q}), \mathcal{G} \rangle_{\Omega}$

•
$$\widetilde{\mathcal{M}}(\boldsymbol{\eta}, \boldsymbol{q}) = \sum_{\kappa} M_{\kappa} \psi_{\kappa}(\boldsymbol{\eta}, \boldsymbol{q})$$

In reality, k depends on hyperparameters $oldsymbol{q} \in \mathbb{H}$: $\mathcal{G} \sim \mathcal{N}(0, k(oldsymbol{q}))$

Hyperparameters dependency

•
$$f(\boldsymbol{\eta}, \boldsymbol{q}) = \sum_{i=1}^{r} \lambda_i(\boldsymbol{q})^{1/2} u_i(\boldsymbol{q}) \eta_i$$
 with $\eta_i = \lambda_i(\boldsymbol{q})^{-1/2} \langle u_i(\boldsymbol{q}), \mathcal{G} \rangle_{\Omega}$

•
$$\widetilde{\mathcal{M}}(\boldsymbol{\eta},\boldsymbol{q}) = \sum_{\kappa} M_{\kappa} \psi_{\kappa}(\boldsymbol{\eta},\boldsymbol{q})$$

• Eigenvalue problem at each iteration + difficulties to build \mathcal{M}

Reference basis [Sraj et al., 2016]

$$orall oldsymbol{x},oldsymbol{x}'\in\Omega,\qquad \overline{k}(oldsymbol{x},oldsymbol{x}'):=\mathbb{E}_{\mathbb{H}}(k(oldsymbol{x},oldsymbol{x}',\cdot)):=\int_{\mathbb{H}}k(oldsymbol{x},oldsymbol{x}',oldsymbol{q})doldsymbol{q},$$

The reference eigenelements $\{\overline{u}_i, \overline{\lambda}_i\}_{i \in \mathbb{N}^*}$, are solution of the reference eigenvalue problem:

$$\forall \mathbf{x} \in \Omega, \ \forall i \in \mathbb{N}^*, \qquad \int_{\Omega} \overline{k}(\mathbf{x}, \mathbf{x}') \overline{u}_i(\mathbf{x}') d\mathbf{x} = \overline{\lambda}_i \overline{u}_i(\mathbf{x}).$$

The representation basis does not depends on **q** anymore. New field representation is obtained by *coordinates transformation*:

$$f(\mathbf{x}) \simeq \hat{f}^r(\mathbf{x}) := \sum_{j=1}^r \overline{\lambda}_j^{1/2} \overline{u}_j(\mathbf{x}) \hat{\eta}_j(\mathbf{q}, \theta),$$

where
$$\hat{\eta}_j(\boldsymbol{q}, \theta) := \sum_{i=1}^r \underbrace{\overline{\lambda}_j^{-1/2} \left\langle \lambda_i(\boldsymbol{q})^{1/2} u_i(\cdot, \boldsymbol{q}), \overline{u}_j \right\rangle_{\Omega}}_{:=b_{ij}(\boldsymbol{q})} \eta_i(\theta)$$

Reference basis

•
$$f(\boldsymbol{\eta}, \boldsymbol{q}) = \sum_{i=1}^{r} \lambda_i(\boldsymbol{q})^{1/2} u_i(\boldsymbol{q}) \eta_i$$
 with $\eta_i = \lambda_i(\boldsymbol{q})^{-1/2} \langle u_i(\boldsymbol{q}), \mathcal{G} \rangle_{\Omega}$

$$\quad \quad \widetilde{\mathcal{M}}(\boldsymbol{\eta},\boldsymbol{q}) = \sum_{\kappa} M_{\kappa} \psi_{\kappa}(\boldsymbol{\eta},\boldsymbol{q})$$

Eigenvalue problem at each iteration + difficulties to build \mathcal{M}

Reference basis

•
$$f(\boldsymbol{\eta}, \boldsymbol{q}) = \sum_{i=1}^{r} \overline{\lambda}_{i}^{1/2} \overline{u}_{i} \hat{\eta}_{i}$$
 with $\hat{\eta}_{j}(\boldsymbol{q}, \theta) := \sum_{i=1}^{r} b_{ij}(\boldsymbol{q}) \eta_{i}(\theta)$

$$\mathbf{I} \quad \widetilde{\mathcal{M}}(\boldsymbol{\hat{\eta}}) = \sum_{\kappa} M_{\kappa} \psi_{\kappa}(\boldsymbol{\hat{\eta}})$$

 b difficult to build + physical sense [Sraj et al., Siripatana et al., 2016, 2020]

Table of contents

Bayesian inference of a physical field

Change of measure method

Applications

Conclusion

Change of measure

Change of coordinates: Sample (η, q)

$$f(\mathbf{x}) \simeq \hat{\mathcal{G}}^{r}(\mathbf{x}, \theta) = \sum_{i=1}^{r} \overline{\lambda}_{i}^{1/2} \overline{u}_{i}(\mathbf{x}) \hat{\eta}_{i}(\theta) \text{ with } \hat{\eta}_{j}(\mathbf{q}, \theta) = \sum_{i=1}^{r} b_{ij}(\mathbf{q}) \eta_{i}(\theta)$$

 $p_{\mathrm{post}}(f(\boldsymbol{\eta}, \boldsymbol{q})|\boldsymbol{d}^{\mathrm{obs}}) \propto \mathcal{L}(\boldsymbol{d}^{\mathrm{obs}}|f(\boldsymbol{\eta}, \boldsymbol{q}))\pi(\boldsymbol{\eta})\pi(\boldsymbol{\eta}).$

Change of measure

Change of coordinates: Sample (η, q)

$$f(\mathbf{x}) \simeq \hat{\mathcal{G}}^{r}(\mathbf{x}, \theta) = \sum_{i=1}^{r} \overline{\lambda}_{i}^{1/2} \overline{u}_{i}(\mathbf{x}) \hat{\eta}_{i}(\theta) \text{ with } \hat{\eta}_{j}(\mathbf{q}, \theta) = \sum_{i=1}^{r} b_{ij}(\mathbf{q}) \eta_{i}(\theta)$$

 $p_{ ext{post}}(f(\boldsymbol{\eta}, \boldsymbol{q})|\boldsymbol{d}^{ ext{obs}}) \propto \mathcal{L}(\boldsymbol{d}^{ ext{obs}}|f(\boldsymbol{\eta}, \boldsymbol{q}))\pi(\boldsymbol{\eta})\pi(\boldsymbol{q}).$

Change of measure: Sample (ξ, q)

$$f(\mathbf{x}) \simeq \overline{\mathcal{G}}^r(\mathbf{x}, \theta) := \sum_{i=1}^r \overline{\lambda}_i^{1/2} \overline{u}_i(\mathbf{x}) \xi_i(\theta) \text{ with } \mathbf{\xi} \sim \mathcal{N}(0, \mathbf{\Sigma}(\mathbf{q}))$$

 $p_{ ext{post}}(f(\boldsymbol{\xi})|\boldsymbol{d}^{ ext{obs}}) \propto \mathcal{L}(\boldsymbol{d}^{ ext{obs}}|f(\boldsymbol{\xi}))\pi(\boldsymbol{\xi}|\boldsymbol{q})\pi(\boldsymbol{q}).$

The *q*-dependency is transferred to the coordinates law. The covariance matrix $\Sigma(q)$ writes:

 $\forall 1 \leqslant i, j \leqslant r, \ \forall \boldsymbol{q} \in \mathbb{H}, \qquad \boldsymbol{\Sigma}_{ij}(\boldsymbol{q}) := (\overline{\lambda}_i \overline{\lambda}_j)^{-1/2} \left\langle \left\langle k(\cdot, \cdot, \boldsymbol{q}), \overline{u}_j \right\rangle_{\Omega}, \overline{u}_i \right\rangle_{\Omega}.$

Workflow

$$(CoC)$$

$$f(\boldsymbol{\eta}, \boldsymbol{q}) = \sum_{i=1}^{r} \overline{\lambda}_{i}^{1/2} \overline{u}_{i} \hat{\eta}_{i}$$

$$\hat{\eta}_{j}(\boldsymbol{q}, \theta) = \sum_{i=1}^{r} b_{ij}(\boldsymbol{q}) \eta_{i}(\theta)$$

b(q) ambiguous along q

(CoM)

•
$$f(\boldsymbol{\xi}) = \sum_{i=1}^{r} \overline{\lambda}_{i}^{1/2} \overline{u}_{i} \boldsymbol{\xi}_{i}$$

•
$$\boldsymbol{\xi} \sim \mathcal{N}(0, \boldsymbol{\Sigma(q)})$$

Σ is smooth along *q*

cea

Polynomial chaos surrogates

At each iteration, computation of $\mathcal{M}(f)$ and

$$\log p_{\rm post}(f|\boldsymbol{d}^{\rm obs}) \propto \log \mathcal{L}(\boldsymbol{d}^{\rm obs}|f) + \log \pi_{\mathbb{H}}(\boldsymbol{q}) + \log \pi(\xi|\boldsymbol{q})$$

 $\mathcal{L}(\boldsymbol{d}^{\mathrm{obs}}|f)$ depends on $\mathcal{M}(f)$ $\xi \sim \mathcal{N}(0, \Sigma(\boldsymbol{q}))$ depends on $\Sigma^{-1/2}$ and logdet_{Σ}

Polynomial chaos surrogates: $Q(\zeta) \simeq \widetilde{Q}(\zeta) = \sum_{a \in \mathcal{A}} c_a P_a(\zeta).$

Quality assessment:

Accuracy: use of *RRMSE*

$$\operatorname{RRMSE}(Q, \widetilde{Q}) = \sqrt{\frac{\sum_{i=1}^{N} \|Q^{(i)} - \widetilde{Q}^{(i)}\|^2}{\sum_{i=1}^{N} \|Q^{(i)}\|^2}}$$

 Cost reduction: speed (*speed-up factor*) and number of exact evaluations

Table of contents

Bayesian inference of a physical field

Change of measure method

Applications

Conclusion

Transient diffusion equation (WIP)

$$\frac{\partial U}{\partial t} = \frac{\partial}{\partial \mathbf{x}} \left(f \frac{\partial U}{\partial x} \right).$$

Objective: comparison with (CoC) method

Finite numerical inaccuracy

For some \boldsymbol{q} , the magnitude of eigenmodes quickly decays. (CoC) $b_{ij}(\boldsymbol{q})$ set to 0 if $\overline{\lambda}_r/\overline{\lambda_1} < \kappa \rightsquigarrow r = 15$, 7 modes are really inferred.

(CoM) choose r such that $\min_{\boldsymbol{q} \in \mathbb{H}} \lambda_r(\boldsymbol{q}) / \lambda_1(\boldsymbol{q}) > \kappa \rightsquigarrow r = 7$ sufficient to explain more than 99.8% of the field variance.

Application to seismic tomography

Application case: 1D section of Amoco model $\left[\text{O'Brien et al., 1994} \right]$ and location of stations

 $m{d}^{
m obs}$: time of arrival, with noise level lpha=0.001s $r=20,\ m{q}=\{A,\ell\}$

Application to seismic tomography

Conclusion

- Inference method allowing uncertainties estimations while remaining tractable
- WIP: comparison of results for transient diffusion equation, draft article
- Next: Reinference using a posteriori as prior; Extension to source location by using EOF

Conclusion

- Inference method allowing uncertainties estimations while remaining tractable
- WIP: comparison of results for transient diffusion equation, draft article
- Next: Reinference using a posteriori as prior; Extension to source location by using EOF

References I

- K. Karhunen. "Zur Spektraltheorie Stochastischer Prozesse". In: *Annales Academiae Scientiarum Fennicae* (1946).
- P. Lailly, F. Rocca, and R. Versteeg. "Synthesis of the Marmousi workshop". In: *The Marmousi Experience*. 1991, pp. 169–194.
- M. Loève. *Probability Theory I.* Vol. 45. Graduate Texts in Mathematics. New York, NY: Springer New York, 1977. ISBN: 978-1-4684-9466-2 978-1-4684-9464-8. DOI: 10.1007/978-1-4684-9464-8.
- Youssef Marzouk and Habib Najm. "Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems". In: *Journal of Computational Physics* 228 (Apr. 2009), pp. 1862–1902. DOI: 10.1016/j.jcp.2008.11.024.
- N. Metropolis et al. "Equation of State Calculations by Fast Computing Machines". In: *The Journal of Chemical Physics* 21.6 (1953), pp. 1087–1092. DOI: 10.1063/1.1699114.

References II

- M. Noble and A. Gesret. *FTeik2d_3.1*. 2011.
 - M. O'Brien and C. Regone. Amoco. 1994.
 - A. Siripatana et al. "Bayesian Inference of Spatially Varying Manning's n Coefficients in an Idealized Coastal Ocean Model Using a Generalized Karhunen-Loève Expansion and Polynomial Chaos". In: *Ocean Dynamics* 70 (2020). ISSN: 1616-7228. DOI: 10.1007/s10236-020-01382-4.
 - I. Sraj et al. "Coordinate Transformation and Polynomial Chaos for the Bayesian Inference of a Gaussian Process with Parametrized Prior Covariance Function". In: *Computer Methods in Applied Mechanics and Engineering* 298 (2016), pp. 205–228. ISSN: 0045-7825. DOI: 10.1016/j.cma.2015.10.002.