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Context
Detection and analysis of seismic events

Global scale
� International treaties

(CTBT, NTP)
� Environment monitoring

(IMS)

Local scale
� Knowledge of subsurface
� Exploitation

Regional scale
� Tsunami and seism alerts
� Risk prevention

S1
S2

R1

t1,1, t2,1

R2

t1,2, t2,2

R3
t1,3, t2,3
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Context: seismic tomography

Velocity field f Forward model(a) M Arrival time dobs

Forward problem

(a) Eikonal solver [Noble et al., 2011]

Objective: Estimation of a field (i) accurate,
(ii) with uncertainties,
(iii) fast.
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Bayes formulation

Bayes rule: ppost(f |dobs) ∝ L(dobs|f )πF (f ).

Markov Chain Monte–Carlo algorithm:
First proposal

f (0)

Proposal evaluation

f (n)

π Prior

M(f) Model solve

L
(
dobs|f

)
Likelihood

ppost
(
f |dobs

)
Posterior

Metropolis�Hastings criterion

Iteration n

n← n+ 1

⇒ Representation of f ?
Evaluation ofM ?
→ Polynomial chaos surrogate [Marzouk et al., 2009].
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Representation of the field

(a) Nodal representation (b) Modal representation

7 Large number of parameters
(expensive)

7 Interpolation needed
3 Easy to implement

3 Few number of modes
3 Defined on all the spatial

domain
⇒ Implementation ?
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Karhunen–Loève decomposition
f (x) is seen as a particular realization of a Gaussian process
G ∼ N (0, k), where k is the autocovariance function [Karhunen,
Loève, 1946, 1977].

f (x) = G(x, θ) '
r∑

i=1
λ
1/2
i ui (x)ηi (θ), with ηi = λ

−1/2
i 〈ui ,G〉Ω

� (ui , λi )i∈N∗ eigenelements of k:

〈k(x, ·), ui〉Ω :=
∫

Ω
k(x, x ′)ui (x ′)dx ′ = λiui (x)

� Bi-orthonormality of the decomposition:
� ∀i , j ∈ N∗, ui , uj orthonormal, 〈ui , uj〉Ω = δi,j ,
� η := (ηi )16i6r ∼ N (0, Ir )

⇒ ppost(f (η)|dobs) ∝ L(dobs|f (η))π(η).
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Dependency on hyperparameters
In fact, G ∼ N (0, k(q)) and therefore,

f (x) '
r∑

i=1
λ
1/2
i (q)ui (x,q)ηi (θ), with ηi = λ

−1/2
i (q) 〈ui (·,q),G〉Ω

Exemple (squared
exponential kernel)

k(x , y ,q := {A, `})

= Aexp
(
−‖x − y‖2

2`2

) (a) Some modes for
` = 20

(b) Some modes for
` = 60

(c) Field obtained
with ` = 20

(d) Field obtained
with ` = 60

⇒ Exploration of hyperparameters space
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Change of measure method
Change of measure:
� Reference kernel k and associated basis (λi , ui )i∈N∗ [Sraj et al.,

2016]

� Sample (ξ,q): the q-dependency is transferred to the
coordinates law, [NP/Sochala/Gesret/Le Maître, in prep.]

f (x) ' Gr (x, θ) :=
r∑

i=1
λ
1/2
i ui (x)ξi (θ) with ξ ∼ N (0,Σ(q))

and ppost(f (ξ)|dobs) ∝ L(dobs|f (ξ))π(ξ|q)π(q).

The covariance matrix Σ(q) writes

∀1 6 i , j 6 r , ∀q ∈ H, Σij(q) := (λiλj)−1/2
〈
〈k(·, ·,q), uj〉Ω , ui

〉
Ω .
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Workflow

OFFLINE

k
(
λk, uk

)
16k6r Gr(x, θ) =

r∑
k=1

λ
1/2

k ukξk(θ) M̃(ξ) =
P∑
κ=0

Mκψκ(ξ)
K�L decomposition PC surrogate

ONLINE Sampling q ξ

π
k(q)

Σ(q)

ξ ∼ N (0,Σ(q))

L̃
(
dobs|f

)

ppost
(
f(ξ)|dobs

)

� Σij(q) = (λiλj)−1/2
〈
〈k(·, ·,q), uj〉Ω , ui

〉
Ω
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Application to seismic tomography

Application case: 1D section of Amoco model [O’Brien et al., 1994] and
location of stations

dobs: time of arrival, with noise level α = 0.002s
r = 20, q = {A, `}
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Application to seismic tomography

(a) Proposed method (b) ` = 20

Comparison of inference results for different bases
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Application to seismic tomography

(a) Proposed method (b) ` = 60

Comparison of inference results for different bases

N. Polette - MCM2023 June 2023 10



Application to seismic tomography

(a) Proposed method (b) `best = 36

Comparison of inference results for different bases
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Application to seismic tomography
Sampling joint law (ξ,q)...
Problem : MCMC fails to draw prior hyperparameters distribution

(a) Marginalized ` prior samples via
MCMC

(b) Marginalized ` posterior samples via
MCMC
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Sampling problem
ξ ∼ N (0,Σ(q)) : The prior law of ξ is highly stretched along q

Prior law of ξ according to q (90%-confidence

contour)

and covariance proposal

Initial sampling :
Metropolis–Hastings random
walk with adapted covariance
proposal

Y ? := (ξ?,q?) ∼ N (Y (n), Ĉ),

with Ĉ ∝ Cov
(

Y (1), . . . ,Y (n)
)

⇒ The random walk with adapted covariance proposal Ĉ needs to
be adjusted along q.

N. Polette - MCM2023 June 2023 12



Sampling problem
ξ ∼ N (0,Σ(q)) : The prior law of ξ is highly stretched along q

Prior law of ξ according to q (90%-confidence

contour) and covariance proposal

Initial sampling :
Metropolis–Hastings random
walk with adapted covariance
proposal

Y ? := (ξ?,q?) ∼ N (Y (n), Ĉ),
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be adjusted along q.

N. Polette - MCM2023 June 2023 12



Presentation of adaptation

We want to consider a q-dependent sampling for ξ.

q? ∼ N (q(n), Ĉq), with Ĉq ∝ Cov
(
q(1), . . . ,q(n)

)
,

ξ? ∼ N (ξ(n),S(q?)), where S(q) remains to define.

Three ideas are explained here:
� a simple scaling
� the use of the conditional covariance
� the use of a change of coordinates preserving measure
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(1) Rescaling the covariance proposal
Objective: restrict the movement along unfeasible directions.
At each iteration,

� consider current scaled empirical covariance proposal Ĉ

(a) ` = 40 (b) ` = 80

Illustration of the scaling process for two values of `
N. Polette - MCM2023 June 2023 14
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(1) Rescaling the covariance proposal
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(1) Rescaling the covariance proposal
Objective: restrict the movement along unfeasible directions.
At each iteration,

� return to physical space: propose according S(q)

(a) ` = 40 (b) ` = 80

Illustration of the scaling process for two values of `
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(1) Rescaling the covariance proposal

Objective: restrict the movement along unfeasible directions,

∀u ∈ Rr , VS(q)(u) . VΣ(q)(u).

Approximation: focus on the prior covariance eigendirections.
S(q) is the scaled empirical covariance of the ξ samples
∝ Cov(ξ(1), . . . , ξ(n)), scaled as follows

We want that, ∀1 6 i 6 r , VS(q)(Ui (q)) . VΣ(q)(Ui (q)),

where (Ui (q),Λii (q)) are the eigenelements of the prior covariance
Σ(q).
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(a) ` = 40, Ĉ (b) ` = 80, Ĉ

(c) ` = 40, S(q) (d) ` = 80, S(q) (zoom)
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(1) Rescaling the covariance proposal

(a) Marginalized ` prior samples via
MCMC (no scaling)

(b) Marginalized ` prior samples via
MCMC (scaling)

Remaining problems :
Scaling along prior eigendirections only
+ how to move in the right
direction/set automatically to zero ?
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(2) Consider Ĉov(ξ|q)

ξ? ∼ N (ξ(n), S(q)) with S(q) ∝ Ĉov(ξ|q?)

Polynomial chaos surrogate

Ĉov(ξ|q?) = Ê(ξξ>|q)− Ê(ξ|q)Ê(ξ|q)>

'
K∑
α=1

ŷαφα(q)−
K∑

α,β=1
x̂αx̂βφα(q)φβ(q),

α, β : set of multi-indexes; (φα)α : orthonormal polynomials;
ŷα, x̂α : PC coefficients obtained via least squares regression

x̂α = argmin
xα

∥∥∥∥∥Ê(ξ|q)−
K∑
α=1

xαφα(q)

∥∥∥∥∥
2

and ŷα = argmin
yα

∥∥∥∥∥Ê(ξξ>|q)−
K∑
α=1

yαφα(q)

∥∥∥∥∥
2
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(2) Consider Ĉov(ξ|q)

(a) ` = 40 (b) ` = 80

Resulting covariance proposal after burn-in phase
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(2) Consider Ĉov(ξ|q)

(a) With Ĉ (b) With Ĉov(ξ|q)

Marginalized ` prior samples via MCMC

� Surrogate building: expensive + order choice +
decomposition at each step

� Surrogate can be non pertinent at non sampled space
� Still remains the problem of setting automatically to zero
N. Polette - MCM2023 June 2023 20



(3) Sampling preserving measure
Idea : We want to sample from a unique distribution: sample
ξ ∼ N (0,Σ(q)).

2 1 0 1 2
16

2

1

0

1

2

18 (n)

q
At each iteration:
� we know (ξ(n)

,q(n))

� Draw ξ? ∼ N (ξ,K )
� Draw q? ∼ N (q, Ĉq)
� ξ? = QCQO(ξ?,q → q?)
� Compute ppost

(
f (ξ?)|dobs

)
� Metropolis–Hastings

criterion to accept or not
� New iteration
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(3) Sampling preserving measure
7 Change of coordinates approach [Sraj et al., 2016]: ξ is seen as
ξ(q) = B(q)η

� Idea : changing q should affect ξ in the sense that we want
� to preserve the prior Mahalanobis distance
� to induce the slightest change in terms of field variations

� QCQO(ξ?,q → q?) :

ξ? = argmin
η

∥∥∥f (ξ?)− f (η)
∥∥∥2 = argmin

η
ξ
?>
λη

(field distance)

s.t. ξ?>Σ(q)−1ξ? = η>Σ(q?)−1η (prior distance)

� Symmetric proposal
� Decomposition of the covariance  QCQO problem solving
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Conclusion & perspectives
� Other possible approaches : splitted sampling, use of

derivatives (HMC). . .
� Change of measure allows uncertainties estimation while

remaining tractable
� Next implementation : QCQO, reinference
� Next application : extend to source location by using EOF

Thank you !
nadege.polette@minesparis.psl.eu
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Eigenvalues according kernel

Decreasing of eigenvalues according to length of correlation considered

⇒ the higher the length of correlation, the smaller the number of
modes needed to explain the field: last coordinates are likely to be
close to zero.
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Variance according hyperparameter

20 30 40 50 60 70 80 90 100
Length of correlation 

0

2

4

6

8

10

()
ii

i = 1
i = 5
i = 10
i = 15
i = 20

Variance of K–L coordinates ξi according to `.

⇒ the higher the length of correlation, the smaller the variance of
last coordinates: they are likely to be close to zero.
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Results Ĉov(ξ|q) - zoom

(a) ` = 40 (b) ` = 80 (zoom)

Resulting covariance proposal after burn-in phase
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