

Bayesian Field Inversion with Hyperparameters Estimation

Nadège Polette^{1,2}, Pierre Sochala¹, Alexandrine Gesret², Olivier Le Maître³

CEA, DAM, DIF, F-91297 Arpajon, France
 ² Mines Paris PSL, Geosciences center, Fontainebleau, France
 ³ CMAP, CNRS, Inria, École Polytechnique, IPP, Palaiseau, France

MCMC2023 - June 2023

Context

Detection and analysis of seismic events

Global scale

- International treaties (CTBT, NTP)
- Environment monitoring (IMS)

Regional scale

- Tsunami and seism alerts
- Risk prevention

Local scale

- Knowledge of subsurface
- Exploitation

-07

(a) Eikonal solver [Noble et al., 2011]

Context: seismic tomography Forward problem Velocity field fPorward model^(a) \mathcal{M} Prival time d^{obs}

^(a) Eikonal solver [Noble et al., 2011]

Objective: Estimation of a field (*i*) accurate, (*ii*) with uncertainties, (*iii*) fast.

Table of contents

Bayesian inference of a physical field

Problem setting Change of measure method Application to seismic tomography

Sampling with dependency on hyperparameters

Covariance proposal scaling Conditional covariance proposal Change of coordinates preserving measure

Conclusion

Bayes formulation

Bayes rule: $p_{\text{post}}(f|\boldsymbol{d}^{\text{obs}}) \propto \mathcal{L}(\boldsymbol{d}^{\text{obs}}|f)\pi_{\mathcal{F}}(f).$

Markov Chain Monte–Carlo algorithm:

Bayes formulation

Bayes rule: $p_{\text{post}}(f|\boldsymbol{d}^{\text{obs}}) \propto \mathcal{L}(\boldsymbol{d}^{\text{obs}}|f)\pi_{\mathcal{F}}(f).$

Markov Chain Monte–Carlo algorithm:

⇒ Representation of f ? Evaluation of M ? → Polynomial chaos surrogate [Marzouk et al., 2009].

June 2023

Representation of the field

(a) Nodal representation

- X Large number of parameters (expensive)
- × Interpolation needed
- Easy to implement

(b) Modal representation

- ✓ Few number of modes
- ✓ Defined on all the spatial domain
- \Rightarrow Implementation ?

Karhunen–Loève decomposition

 $f(\mathbf{x})$ is seen as a particular *realization of a Gaussian process* $\mathcal{G} \sim \mathcal{N}(0, k)$, where k is the *autocovariance function* [Karhunen, Loève, 1946, 1977].

$$f(\boldsymbol{x}) = \mathcal{G}(\boldsymbol{x}, \theta) \simeq \sum_{i=1}^{r} \lambda_i^{1/2} u_i(\boldsymbol{x}) \eta_i(\theta), \text{ with } \eta_i = \lambda_i^{-1/2} \langle u_i, \mathcal{G} \rangle_{\Omega}$$

• $(u_i, \lambda_i)_{i \in \mathbb{N}^*}$ eigenelements of k:

$$\langle k(\mathbf{x},\cdot), u_i \rangle_{\Omega} := \int_{\Omega} k(\mathbf{x}, \mathbf{x}') u_i(\mathbf{x}') d\mathbf{x}' = \lambda_i u_i(\mathbf{x})$$

$$\Rightarrow p_{\text{post}}(f(\boldsymbol{\eta})|\boldsymbol{d}^{\text{obs}}) \propto \mathcal{L}(\boldsymbol{d}^{\text{obs}}|f(\boldsymbol{\eta}))\pi(\boldsymbol{\eta}).$$

Dependency on hyperparameters

In fact, $\mathcal{G} \sim \mathcal{N}(0, k(q))$ and therefore,

$$f(\boldsymbol{x}) \simeq \sum_{i=1}^{r} \lambda_{i}^{1/2}(\boldsymbol{q}) u_{i}(\boldsymbol{x}, \boldsymbol{q}) \eta_{i}(\boldsymbol{\theta}), \text{ with } \eta_{i} = \lambda_{i}^{-1/2}(\boldsymbol{q}) \langle u_{i}(\cdot, \boldsymbol{q}), \mathcal{G} \rangle_{\Omega}$$

Exemple (squared exponential kernel)

$$k(x, y, \boldsymbol{q} := \{\boldsymbol{A}, \ell\})$$
$$= \boldsymbol{A} \exp\left(-\frac{\|x - y\|^2}{2\ell^2}\right)$$

(a) Some modes for $\ell = 20$

(b) Some modes for $\ell = 60$

(c) Field obtained with $\ell = 20$

with $\ell = 60$

 \Rightarrow Exploration of hyperparameters space

cea

Change of measure method

Change of measure:

- Reference kernel \overline{k} and associated basis $(\overline{\lambda}_i, \overline{u}_i)_{i \in \mathbb{N}^*}$ [Sraj et al., 2016]
- Sample (ξ, q): the q-dependency is transferred to the coordinates law, [NP/Sochala/Gesret/Le Maître, in prep.]

$$f(\mathbf{x}) \simeq \overline{\mathcal{G}}^r(\mathbf{x}, heta) := \sum_{i=1}^r \overline{\lambda}_i^{1/2} \overline{u}_i(\mathbf{x}) \xi_i(heta) ext{ with } \mathbf{\xi} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}(\mathbf{q}))$$

and
$$p_{ ext{post}}(f(m{\xi})|m{d}^{ ext{obs}}) \propto \mathcal{L}(m{d}^{ ext{obs}}|f(m{\xi}))\pi(m{\xi}|m{q})\pi(m{q}).$$

The covariance matrix $\Sigma(\mathbf{q})$ writes

 $\forall 1 \leqslant i, j \leqslant r, \ \forall \boldsymbol{q} \in \mathbb{H}, \qquad \boldsymbol{\Sigma}_{ij}(\boldsymbol{q}) := (\overline{\lambda}_i \overline{\lambda}_j)^{-1/2} \left\langle \left\langle k(\cdot, \cdot, \boldsymbol{q}), \overline{u}_j \right\rangle_{\Omega}, \overline{u}_i \right\rangle_{\Omega}.$

Workflow

Application case: 1D section of Amoco model $\left[\text{O'Brien et al., 1994} \right]$ and location of stations

 $m{d}^{
m obs}$: time of arrival, with noise level lpha=0.002sr= 20, $m{q}=\{A,\ell\}$

(a) Proposed method

(b) $\ell = 20$

Comparison of inference results for different bases

(a) Proposed method

(b) $\ell = 60$

Comparison of inference results for different bases

(a) Proposed method

(b) $\ell_{\rm best} = 36$

Comparison of inference results for different bases

Sampling joint law $(\boldsymbol{\xi}, \boldsymbol{q})$...

Problem : MCMC fails to draw prior hyperparameters distribution

-07

Table of contents

Bayesian inference of a physical field

Problem setting Change of measure method Application to seismic tomography

Sampling with dependency on hyperparameters

Covariance proposal scaling Conditional covariance proposal Change of coordinates preserving measure

Conclusion

Sampling problem

 $m{\xi} \sim \mathcal{N}(0, \Sigma(m{q}))$: The prior law of $m{\xi}$ is highly stretched along $m{q}$

Prior law of $\boldsymbol{\xi}$ according to \boldsymbol{q} (90%-confidence contour)

Sampling problem

 $\boldsymbol{\xi} \sim \mathcal{N}(0, \Sigma(\boldsymbol{q}))$: The prior law of $\boldsymbol{\xi}$ is highly stretched along \boldsymbol{q}

Prior law of $\boldsymbol{\xi}$ according to \boldsymbol{q} (90%-confidence contour) and covariance proposal

Initial sampling : Metropolis–Hastings random walk with adapted covariance proposal

$$Y^{\star} := (\boldsymbol{\xi}^{\star}, \boldsymbol{q}^{\star}) \sim \mathcal{N}(Y^{(n)}, \widehat{C}),$$

with
$$\widehat{\mathcal{C}} \propto \mathbb{C}\mathrm{ov}\left(Y^{(1)},\ldots,Y^{(n)}
ight)$$

Sampling problem

 $\boldsymbol{\xi} \sim \mathcal{N}(0, \Sigma(\boldsymbol{q}))$: The prior law of $\boldsymbol{\xi}$ is highly stretched along \boldsymbol{q}

Initial sampling : Metropolis–Hastings random walk with adapted covariance proposal

$$Y^{\star} := (\boldsymbol{\xi}^{\star}, \boldsymbol{q}^{\star}) \sim \mathcal{N}(Y^{(n)}, \widehat{C}),$$

with
$$\widehat{\mathcal{C}} \propto \mathbb{C}\mathrm{ov}\left(Y^{(1)},\ldots,Y^{(n)}
ight)$$

Prior law of $\boldsymbol{\xi}$ according to \boldsymbol{q} (90%-confidence contour) and covariance proposal

 \Rightarrow The random walk with adapted covariance proposal \widehat{C} needs to be adjusted along \boldsymbol{q} .

Presentation of adaptation

We want to consider a q-dependent sampling for ξ .

$$oldsymbol{q}^{\star} \sim \mathcal{N}(oldsymbol{q}^{(n)}, \widehat{C}_{oldsymbol{q}}), ext{ with } \widehat{C}_{oldsymbol{q}} \propto \mathbb{C} \mathrm{ov}\left(oldsymbol{q}^{(1)}, \dots, oldsymbol{q}^{(n)}
ight),$$

 $oldsymbol{\xi}^{\star} \sim \mathcal{N}(oldsymbol{\xi}^{(n)}, S(oldsymbol{q}^{\star})), ext{ where } S(oldsymbol{q}) ext{ remains to define.}$

Three ideas are explained here:

- a simple scaling
- the use of the *conditional covariance*
- the use of a change of coordinates *preserving measure*

Objective: *restrict the movement along unfeasible directions*. At each iteration,

• consider current scaled empirical covariance proposal \widehat{C}

Illustration of the scaling process for two values of ℓ $_{\rm N.\ Polette}$ - $_{\rm MCM2023}$

Objective: *restrict the movement along unfeasible directions*. At each iteration,

• change of basis according to the prior $\Sigma(q)$ eigenelements

Illustration of the scaling process for two values of ℓ N. Polette - MCM2023 June 2023

YY

Objective: *restrict the movement along unfeasible directions*. At each iteration,

scaling along eigendirections

YY

Objective: *restrict the movement along unfeasible directions*. At each iteration,

• return to physical space: propose according S(q)

Illustration of the scaling process for two values of ℓ $_{\rm N.\ Polette}$ - $_{\rm MCM2023}$

Objective: restrict the movement along unfeasible directions,

$$\forall u \in \mathbb{R}^r, \qquad \mathbb{V}_{\mathcal{S}(q)}(u) \lesssim \mathbb{V}_{\Sigma(q)}(u).$$

Approximation: focus on the prior covariance eigendirections. S(q) is the scaled empirical covariance of the ξ samples $\propto \mathbb{C}\mathrm{ov}(\xi^{(1)},\ldots,\xi^{(n)})$, scaled as follows

We want that, $\forall 1 \leq i \leq r$, $\mathbb{V}_{S(q)}(U_i(q)) \lesssim \mathbb{V}_{\Sigma(q)}(U_i(q))$,

where $(U_i(\boldsymbol{q}), \Lambda_{ii}(\boldsymbol{q}))$ are the eigenelements of the prior covariance $\Sigma(\boldsymbol{q})$.

(a) Marginalized ℓ prior samples via MCMC (no scaling)

(b) Marginalized ℓ prior samples via MCMC (scaling)

Remaining problems :

Scaling along prior eigendirections only + how to move in the right direction/set automatically to zero ?

(2) Consider $\widehat{\mathbb{C}}_{ov}(\boldsymbol{\xi}|\boldsymbol{q})$

$$oldsymbol{\xi}^\star \sim \mathcal{N}(oldsymbol{\xi}^{(n)}, S(oldsymbol{q}))$$
 with $S(oldsymbol{q}) \propto \widehat{ ext{Cov}}(oldsymbol{\xi} |oldsymbol{q}^\star)$

Polynomial chaos surrogate

$$egin{aligned} \widehat{\mathbb{C}\mathrm{ov}}(oldsymbol{\xi}|oldsymbol{q}^{\star}) &= \widehat{\mathbb{E}}(oldsymbol{\xi}oldsymbol{\xi}^{ op}|oldsymbol{q}) - \widehat{\mathbb{E}}(oldsymbol{\xi}|oldsymbol{q})\widehat{\mathbb{E}}(oldsymbol{\xi}|oldsymbol{q})^{ op} \ &\simeq \sum_{lpha=1}^{K} \widehat{y}_{lpha}\phi_{lpha}(oldsymbol{q}) - \sum_{lpha,eta=1}^{K} \widehat{x}_{lpha}\widehat{x}_{eta}\phi_{lpha}(oldsymbol{q})\phi_{eta}(oldsymbol{q}), \end{aligned}$$

 α, β : set of multi-indexes; $(\phi_{\alpha})_{\alpha}$: orthonormal polynomials; $\hat{y}_{\alpha}, \hat{x}_{\alpha}$: PC coefficients obtained via *least squares regression*

$$\widehat{x}_{\alpha} = \underset{x_{\alpha}}{\operatorname{argmin}} \left\| \widehat{\mathbb{E}}(\boldsymbol{\xi}|\boldsymbol{q}) - \sum_{\alpha=1}^{K} x_{\alpha} \phi_{\alpha}(\boldsymbol{q}) \right\|^{2}$$

and $\widehat{y_{\alpha}} = \underset{y_{\alpha}}{\operatorname{argmin}} \left\| \widehat{\mathbb{E}}(\boldsymbol{\xi}\boldsymbol{\xi}^{\top}|\boldsymbol{q}) - \sum_{\alpha=1}^{K} y_{\alpha} \phi_{\alpha}(\boldsymbol{q}) \right\|^{2}$

(2) Consider $\widehat{\mathbb{C}}_{ov}(\boldsymbol{\xi}|\boldsymbol{q})$

$$oldsymbol{\xi}^{\star} \sim \mathcal{N}(oldsymbol{\xi}^{(n)}, S(oldsymbol{q}))$$
 with $S(oldsymbol{q}) \propto \widehat{\mathbb{C}\mathrm{ov}}(oldsymbol{\xi} |oldsymbol{q}^{\star})$

Polynomial chaos surrogate

$$egin{aligned} \widehat{\mathbb{C}\mathrm{ov}}(oldsymbol{\xi}|oldsymbol{q}^{\star}) &= \widehat{\mathbb{E}}(oldsymbol{\xi}oldsymbol{\xi}^{ op}|oldsymbol{q}) - \widehat{\mathbb{E}}(oldsymbol{\xi}|oldsymbol{q})\widehat{\mathbb{E}}(oldsymbol{\xi}|oldsymbol{q})^{ op} \ &\simeq \sum_{lpha=1}^{K} \widehat{y}_{lpha}\phi_{lpha}(oldsymbol{q}) - \sum_{lpha,eta=1}^{K} \widehat{x}_{lpha}\widehat{x}_{eta}\phi_{lpha}(oldsymbol{q})\phi_{eta}(oldsymbol{q}), \end{aligned}$$

 α, β : set of multi-indexes; $(\phi_{\alpha})_{\alpha}$: orthonormal polynomials; $\hat{y}_{\alpha}, \hat{x}_{\alpha}$: PC coefficients obtained via *least squares regression*

$$\widehat{x}_{\alpha} = \underset{x_{\alpha}}{\operatorname{argmin}} \left\| \widehat{\mathbb{E}}(\boldsymbol{\xi}|\boldsymbol{q}) - \sum_{\alpha=1}^{K} x_{\alpha} \phi_{\alpha}(\boldsymbol{q}) \right\|^{2}$$

and $\widehat{y_{\alpha}} = \underset{y_{\alpha}}{\operatorname{argmin}} \left\| \widehat{\mathbb{E}}(\boldsymbol{\xi}\boldsymbol{\xi}^{\top}|\boldsymbol{q}) - \sum_{\alpha=1}^{K} y_{\alpha} \phi_{\alpha}(\boldsymbol{q}) \right\|^{2}$

(2) Consider $\widehat{\mathbb{C}}_{ov}(\boldsymbol{\xi}|\boldsymbol{q})$

$$oldsymbol{\xi}^{\star} \sim \mathcal{N}(oldsymbol{\xi}^{(n)}, S(oldsymbol{q}))$$
 with $S(oldsymbol{q}) \propto \widehat{\mathbb{C}\mathrm{ov}}(oldsymbol{\xi} |oldsymbol{q}^{\star})$

Polynomial chaos surrogate

$$egin{aligned} \widehat{\mathbb{C}\mathrm{ov}}(oldsymbol{\xi}|oldsymbol{q}^{\star}) &= \widehat{\mathbb{E}}(oldsymbol{\xi}oldsymbol{\xi}^{ op}|oldsymbol{q}) - \widehat{\mathbb{E}}(oldsymbol{\xi}|oldsymbol{q})\widehat{\mathbb{E}}(oldsymbol{\xi}|oldsymbol{q})^{ op} \ &\simeq \sum_{lpha=1}^{K} \widehat{y}_{lpha}\phi_{lpha}(oldsymbol{q}) - \sum_{lpha,eta=1}^{K} \widehat{x}_{lpha}\widehat{x}_{eta}\phi_{lpha}(oldsymbol{q})\phi_{eta}(oldsymbol{q}), \end{aligned}$$

 α, β : set of multi-indexes; $(\phi_{\alpha})_{\alpha}$: orthonormal polynomials; $\hat{y}_{\alpha}, \hat{x}_{\alpha}$: PC coefficients obtained via *least squares regression*

$$\widehat{x}_{\alpha} = \underset{x_{\alpha}}{\operatorname{argmin}} \sum_{i=1}^{N} \left\| \boldsymbol{\xi}^{(i)} - \sum_{\alpha=1}^{K} x_{\alpha} \phi_{\alpha}(\boldsymbol{q}^{(i)}) \right\|^{2}$$

and $\widehat{y_{\alpha}} = \underset{y_{\alpha}}{\operatorname{argmin}} \sum_{i=1}^{N} \left\| \boldsymbol{\xi}^{(i)} \boldsymbol{\xi}^{(i)\top} - \sum_{\alpha=1}^{K} y_{\alpha} \phi_{\alpha}(\boldsymbol{q}^{(i)}) \right\|^{2}$

(2) Consider $\widehat{\mathbb{C}\mathrm{ov}}(\boldsymbol{\xi}|\boldsymbol{q})$

Resulting covariance proposal after burn-in phase

Marginalized ℓ prior samples via MCMC

- Surrogate building: expensive + order choice + decomposition at each step
- Surrogate can be non pertinent at non sampled space
- Still remains the problem of setting automatically to zero

Idea : We want to sample from a unique distribution: sample $\overline{\xi} \sim \mathcal{N}(0, \Sigma(\overline{\boldsymbol{q}})).$

At each iteration:

• we know
$$(\overline{\boldsymbol{\xi}}^{(n)}, \boldsymbol{q}^{(n)})$$

Idea : We want to sample from a unique distribution: sample $\overline{\xi} \sim \mathcal{N}(0, \Sigma(\overline{\boldsymbol{q}})).$

At each iteration:

• we know
$$(\overline{\boldsymbol{\xi}}^{(n)}, \boldsymbol{q}^{(n)})$$

• Draw
$$\overline{\boldsymbol{\xi}}^{\star} \sim \mathcal{N}(\overline{\boldsymbol{\xi}}, K)$$

Idea : We want to sample from a unique distribution: sample $\overline{\xi} \sim \mathcal{N}(0, \Sigma(\overline{\boldsymbol{q}})).$

At each iteration:

• we know $(\overline{\boldsymbol{\xi}}^{(n)}, \boldsymbol{q}^{(n)})$

• Draw
$$\overline{\boldsymbol{\xi}}^{\star} \sim \mathcal{N}(\overline{\boldsymbol{\xi}}, K)$$

• Draw
$$\boldsymbol{q}^{\star} \sim \mathcal{N}(\boldsymbol{q}, \widehat{C}_{\boldsymbol{q}})$$

Idea : We want to sample from a unique distribution: sample $\overline{\xi} \sim \mathcal{N}(0, \Sigma(\overline{\boldsymbol{q}})).$

At each iteration:

• we know $(\overline{\boldsymbol{\xi}}^{(n)}, \boldsymbol{q}^{(n)})$

Draw
$$\overline{\boldsymbol{\xi}}^{\star} \sim \mathcal{N}(\overline{\boldsymbol{\xi}}, K)$$

Draw
$$oldsymbol{q}^\star \sim \mathcal{N}(oldsymbol{q}, \widehat{C}_{oldsymbol{q}})$$

$$\boldsymbol{\xi}^{\star} = \text{QCQO}(\overline{\boldsymbol{\xi}}^{\star}, \overline{\boldsymbol{q}} \to \boldsymbol{q}^{\star})$$

Cez

Idea : We want to sample from a unique distribution: sample $\overline{\xi} \sim \mathcal{N}(0, \Sigma(\overline{\boldsymbol{q}})).$

At each iteration:

- we know $(\overline{\boldsymbol{\xi}}^{(n)}, \boldsymbol{q}^{(n)})$
- Draw $\overline{\boldsymbol{\xi}}^{\star} \sim \mathcal{N}(\overline{\boldsymbol{\xi}}, K)$
- Draw $\boldsymbol{q}^{\star} \sim \mathcal{N}(\boldsymbol{q}, \widehat{C}_{\boldsymbol{q}})$

$$\boldsymbol{\xi}^{\star} = \operatorname{QCQO}(\overline{\boldsymbol{\xi}}^{\star}, \overline{\boldsymbol{q}} \to \boldsymbol{q}^{\star})$$

- Compute $p_{\text{post}}\left(f(\boldsymbol{\xi}^{\star})|\boldsymbol{d}^{\text{obs}}\right)$
- Metropolis–Hastings criterion to accept or not
- New iteration

Cez

- **x** Change of coordinates approach [Sraj et al., 2016]: $\boldsymbol{\xi}$ is seen as $\boldsymbol{\xi}(\boldsymbol{q}) = B(\boldsymbol{q})\eta$
- Idea : changing ${m q}$ should affect ${m \xi}$ in the sense that we want
 - to preserve the prior Mahalanobis distance
 - to induce the slightest change in terms of field variations
- QCQO $(\overline{\boldsymbol{\xi}}^{\star}, \overline{\boldsymbol{q}} \rightarrow \boldsymbol{q}^{\star})$:

$$\boldsymbol{\xi}^{\star} = \underset{\eta}{\operatorname{argmin}} \left\| f(\overline{\boldsymbol{\xi}}^{\star}) - f(\eta) \right\|^{2} = \underset{\eta}{\operatorname{argmin}} \overline{\boldsymbol{\xi}}^{\star \top} \overline{\boldsymbol{\lambda}} \eta$$
(field distance)
s.t.
$$\overline{\boldsymbol{\xi}}^{\star \top} \Sigma(\overline{\boldsymbol{q}})^{-1} \overline{\boldsymbol{\xi}}^{\star} = \eta^{\top} \Sigma(\boldsymbol{q}^{\star})^{-1} \eta$$
(prior distance)

- **x** Change of coordinates approach [Sraj et al., 2016]: $\boldsymbol{\xi}$ is seen as $\boldsymbol{\xi}(\boldsymbol{q}) = B(\boldsymbol{q})\eta$
- Idea : changing ${m q}$ should affect ${m \xi}$ in the sense that we want
 - to preserve the prior Mahalanobis distance
 - to induce the slightest change in terms of field variations
- QCQO $(\overline{\boldsymbol{\xi}}^{\star}, \overline{\boldsymbol{q}} \rightarrow \boldsymbol{q}^{\star})$:

- Symmetric proposal
- Decomposition of the covariance $\rightsquigarrow QCQO$ problem solving

Conclusion & perspectives

- Other possible approaches : splitted sampling, use of derivatives (HMC)...
- Change of measure allows uncertainties estimation while remaining tractable
- Next implementation : QCQO, reinference
- Next application : extend to source location by using EOF

Conclusion & perspectives

- Other possible approaches : splitted sampling, use of derivatives (HMC)...
- Change of measure allows uncertainties estimation while remaining tractable
- Next implementation : QCQO, reinference
- Next application : extend to source location by using EOF

Thank you !

nadege.polette@minesparis.psl.eu

References I

- K. Karhunen. "Zur Spektraltheorie Stochastischer Prozesse". In: *Annales Academiae Scientiarum Fennicae* (1946).
- P. Lailly, F. Rocca, and R. Versteeg. "Synthesis of the Marmousi workshop". In: *The Marmousi Experience*. 1991, pp. 169–194.
- M. Loève. *Probability Theory I.* Vol. 45. Graduate Texts in Mathematics. New York, NY: Springer New York, 1977. ISBN: 978-1-4684-9466-2 978-1-4684-9464-8. DOI: 10.1007/978-1-4684-9464-8.
- Youssef Marzouk and Habib Najm. "Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems". In: *Journal of Computational Physics* 228 (Apr. 2009), pp. 1862–1902. DOI: 10.1016/j.jcp.2008.11.024.
- N. Metropolis et al. "Equation of State Calculations by Fast Computing Machines". In: *The Journal of Chemical Physics* 21.6 (1953), pp. 1087–1092. DOI: 10.1063/1.1699114.

References II

- M. Noble and A. Gesret. *FTeik2d_3.1*. 2011.
 - M. O'Brien and C. Regone. Amoco. 1994.
 - I. Sraj et al. "Coordinate Transformation and Polynomial Chaos for the Bayesian Inference of a Gaussian Process with Parametrized Prior Covariance Function". In: *Computer Methods in Applied Mechanics and Engineering* 298 (2016), pp. 205–228. ISSN: 0045-7825. DOI: 10.1016/j.cma.2015.10.002.

Eigenvalues according kernel

Decreasing of eigenvalues according to length of correlation considered

 \Rightarrow the higher the length of correlation, the smaller the number of modes needed to explain the field: last coordinates are likely to be close to zero.

Variance according hyperparameter

Variance of K–L coordinates ξ_i according to ℓ .

 \Rightarrow the higher the length of correlation, the smaller the variance of last coordinates: they are likely to be close to zero.

Cez

Results $\widehat{\mathbb{C}\mathrm{ov}}(\boldsymbol{\xi}|\boldsymbol{q})$ - zoom

Resulting covariance proposal after burn-in phase