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Summary

The fight against nuclear proliferation consists in the first place in overseeing the respect of the
international treaties. In that context, numerical tools are developed in order to monitor the
environment and analyze geophysical events. In particular, when an earthquake occurs, the
displacement of the ground due to the waves travelling inside the Earth’s crust is registered by
seismographs. With these data, information about the event can be reconstructed, for instance
its location and its nature.

In this report, the modeling is based on a seismic tomography approach. The link between
the waves arrival times detected by receptors and the waves velocity field in the traveled region
is studied. A method is developed in order to infer a continuous velocity field from the data,
without using a strong a priori on the field shape. The computational cost of this method is
reduced by the use of surrogate modeling, which consists in replacing expensive and accurate
representations by cheaper approximations.

This approach is tested on a realistic one dimensional case. To not use a stronger a priori
shape for the initial distribution of the velocity field allows to avoid overfitting and to obtain a
more realistic and general prediction.

The extension to a two-dimensional case will need to add supplementary reduction methods
and a better quantification of the error sources. The knowledge of the velocity field and the
quantification of uncertainty related to this knowledge are useful to improve the determination
of the seismic sources location and therefore of their accurate characterization.

Keywords: seismic tomography, Bayesian inference, surrogate models.
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Résumé

La lutte contre la prolifération nucléaire passe en premier lieu par le contrôle du respect
des traités internationaux. Dans ce contexte, des outils numériques sont développés afin de
surveiller l’environnement et d’analyser les évènements géophysiques. En particulier, lorsqu’un
séisme se produit, le déplacement du sol est enregistré par des séismographes. La localisation
et la nature de l’évènement peuvent être déduites de ces données.

Dans ce rapport, la modélisation s’appuie sur une approche de tomographie sismique. Le
lien entre le temps d’arrivée des ondes enregistrées par un récepteur et le champ de vitesse
de ces ondes dans la zone traversée est étudié. Une méthode est développée afin d’inférer un
champ de vitesse continu à partir des données, sans utiliser d’a priori trop contraignant sur la
forme du champ. L’efficacité computationnelle est améliorée grâce à l’utilisation de modèles de
substitution, qui sont des approximations des modèles de référence précis, mais coûteux.

Cette approche est appliquée à un cas réaliste unidimensionnel. Ne pas forcer un a priori
trop fort sur la distribution initiale du champ de vitesse permet d’éviter le surapprentissage et
d’avoir une prédiction plus réaliste et généralisable.

L’extension à des champs à deux dimensions nécessitera l’utilisation de méthodes de réduc-
tion supplémentaires, et une meilleure quantification des différentes sources d’erreurs. La con-
naissance du champ de vitesse et des incertitudes associées font partie des moyens d’améliorer
la localisation d’une source sismique et donc de mieux définir ses caractéristiques.

Mots-clés: tomographie sismique, inférence bayésienne, modèle de substitution.

5



List of Figures

1 Anomaly map from seismic tomography. . . . . . . . . . . . . . . . . . . . . . . 13
2 Principle of seismic tomography. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Continuous 1D case: field and observations. . . . . . . . . . . . . . . . . . . . . 26
4 Velocity field for different values of parameters. . . . . . . . . . . . . . . . . . . 28
5 Convergence of the reference kernel computation. . . . . . . . . . . . . . . . . . 29
6 Projection on the reference basis. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 Comparison of projection error for different bases. . . . . . . . . . . . . . . . . . 31
8 Shapes of different covariance kernels. . . . . . . . . . . . . . . . . . . . . . . . . 31
9 Comparison of eigenelements for different bases. . . . . . . . . . . . . . . . . . . 32
10 Projection error according to the basis. . . . . . . . . . . . . . . . . . . . . . . . 33
11 Projection error for a large length of correlation field. . . . . . . . . . . . . . . . 33
12 Projection for a small length of correlation field. . . . . . . . . . . . . . . . . . . 33
13 Values of change of measure matrix according to the length of correlation. . . . 34
14 Change of measure matrix coefficients according to the length of correlation. . . 35
15 RRMSE for the change of measure matrix surrogate when disregarding small

surrogate coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
16 RRMSE for the change of measure matrix surrogate according to the computa-

tions parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
17 Results after building the change of measure matrix surrogate. . . . . . . . . . . 38
18 RRMSE of the eikonal surrogate. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
19 Convergence study for the MCMC algorithm. . . . . . . . . . . . . . . . . . . . 39
20 Marginal posterior distributions of the K–L coordinates. . . . . . . . . . . . . . 40
21 Correlation between the first K–L coordinate and the mean. . . . . . . . . . . . 40
22 Marginal posterior distributions of the parameters. . . . . . . . . . . . . . . . . 41
23 Velocity field distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
24 Results concerning times of arrival. . . . . . . . . . . . . . . . . . . . . . . . . . 43
25 K–L projections of the velocity field on parametrized bases. . . . . . . . . . . . . 45
26 Posterior distributions of the velocity field for parametrized bases. . . . . . . . . 45
27 RRMSE for the different error sources. . . . . . . . . . . . . . . . . . . . . . . . 47
28 Comparison of errors in the general case. . . . . . . . . . . . . . . . . . . . . . . 48
29 Comparison of errors in the application case. . . . . . . . . . . . . . . . . . . . . 48
30 Comparison of the reference squared exponential kernel and the parametrized

Matérn’s one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
31 Parameters influence on the Matérn’s kernel shape. . . . . . . . . . . . . . . . . 49



Ecole des Ponts ParisTech - Internship report M2 Research

32 Search for best Matérn’s kernel parameters. . . . . . . . . . . . . . . . . . . . . 50
33 Projection errors on Matérn’s parametrized bases. . . . . . . . . . . . . . . . . . 51
34 Results for the reference Matérn’s kernel. . . . . . . . . . . . . . . . . . . . . . . 51
35 Preliminary results using non constant mean. . . . . . . . . . . . . . . . . . . . 52
36 Size of the Smolyak’s sparse grid. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
37 Gaussian noise used in sensitivity analysis. . . . . . . . . . . . . . . . . . . . . . 67
38 Sensitivity analysis results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
39 Sensitivity analysis results with two supplementary receptors. . . . . . . . . . . 69

7



List of Tables

1 Bounds used for shape parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 27
2 Values/Range of parameters used in MCMC inference. . . . . . . . . . . . . . . 38



Ecole des Ponts ParisTech - Internship report M2 Research

List of Algorithms

1 Metropolis–Hastings algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Computation of the traveltime surrogate. . . . . . . . . . . . . . . . . . . . . . 25
3 Computation of the covariance matrix surrogate. . . . . . . . . . . . . . . . . . 25
4 Study of reference basis interest. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Choice of the PC surrogate degree. . . . . . . . . . . . . . . . . . . . . . . . . 37

9



Ecole des Ponts ParisTech - Internship report M2 Research

Presentation of the company

The CEA and the DAM

The Commissariat à l’Énergie Atomique et aux énergies alternatives (CEA) is a French public
government-funded research organization created in 1945 by Charles de Gaulle. Its areas of
expertise are
• defense and security,
• low carbon energy (nuclear and other renewable energy),
• research for the industry,
• fundamental research (science of matter and life science).

Collaboration projects with numerous academic and industrial partners are led. The CEA has
9 sites across France:
• headquarters in Paris,
• 4 civil sites in Paris-Saclay, Grenoble, Marcoule and Cadarache,
• 4 centers for military applications in Direction des Applications Militaires (DAM) Île-de-

France (DIF), Le Ripault, Valduc, Cesta and Gramat.

My internship took place in the DAM site of the CEA, which has to design, build, main-
tain in operating conditions and dismantle nuclear warheads that equip airborne and oceanic
French nuclear forces. It develops and produces nuclear cores and reactors for the French Navy
and is responsible for the nuclear supply for peacekeeping. Finally, it contributes to national
and international security against nuclear proliferation, terrorism and deals with disarmament
matters.
More specifically, I worked at the DIF center for 6 months, located in Bruyères-Le-Châtel
(Essonne). This site focuses on studying weapon physics and numerical simulations while
combating nuclear proliferation and monitoring the French territory in case of any nuclear,
earthquake or tsunami emergencies.

Workforce and technology

To achieve these goals, the DIF is composed of 2000 employees, mainly researchers, and it
hosts around 600 workers from foreign companies every day. Since 2003, the center hosts
the scientific computing complex of the CEA, which gathers all the CEA’s supercomputers,
like the Tera1000 supercomputer which is used for the DAM Simulation program. It also sells
computational power to external companies (mainly French industries). These supercomputers,
which are among the most powerful ones in Europe, help the CEA contribute to European

10
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projects. Prominent researchers make up the workforce of the DAM site, publishing numerous
papers all year long in cooperation with other (French or foreign) academics.

The monitoring mission of the CEA

The DAM is involved in the fight against the nuclear proliferation and the terrorism. Among
other things, it places its expertise at the service of the International Atomic Energy Agency
(IAEA) and of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). This con-
tribution to strategic programs is based on the abilities of the CEA concerning the tracking of
seismic events, the detection of radionuclides, the measure of atmospheric phenomena, and the
conception of sensors and associated networks. With the experience of its teams in this field,
the CEA is in charge of detecting all seismic event, locating it rapidly, computing its magnitude,
and emitting an alert aimed at public authorities. Its activities also includes quantification of
seismic risk for given geographic areas.

In that context, my mission at the CEA is part of the fundamental research and studies
that are led to improve modeling and detecting tools. In order to be efficient and precise when
emitting alerts, the CEA needs competitive numerical models. In my six-months internship, I
develop and enhance numerical methods aimed at better characterize the environment. This
internship is supervised by Pierre Sochala, researcher at the DIF, and my in-school tutor is
Julien Reygner. Regular meetings with Alexandrine Gesret, researcher at Mines ParisTech
(Geosciences center, Fontainebleau) and Olivier Le Maître (CNRS, LIMSI, Université Paris-
Saclay) complement the geophysical and mathematical sides of this internship.

11



Ecole des Ponts ParisTech - Internship report M2 Research

1 Introduction

This internship takes place in the context of the data analysis from the International Monitoring
System (IMS), which is introduced in Section 1.1. In particular, data of interest are seismic
waves records. The associated geophysical context is presented in Section 1.2. In Section 1.3,
the modeling framework is detailed.

1.1 International Monitoring System (IMS)

The fight against nuclear proliferation consists in the first place in international treaties’ moni-
toring: the Non-Proliferation Treaty (NTP) and the Comprehensive Test Ban Treaty (CTBT).
In particular, the CTBT’s verification system includes the IMS, which is currently being de-
ployed, and which will be composed of 321 stations using several detection methods:
• hydroacoustic technology: 11 stations, to detect acoustic energy generated by underwater

events, and to help climate research;
• infrasound technology: 60 stations, to detect low-frequency sound waves in the atmo-

sphere;
• seismic technology: 170 stations, to detect shock waves traveling through the Earth;
• radionuclide technology: 80 stations, to detect radioactive particles and radioactive noble

gases;
The repartition of these stations are shown in Appendix A. The recordings of these stations
will be transmitted in real-time to an international center based in Vienna (Austria), that
will analyze them. The objective of the IMS is to guarantee the detection of every nuclear
explosion if its energy is superior to 1,000 tons of TNT whatever its location onto the globe, in
the atmosphere or the oceans [7].

1.2 Seismic tomography

As a result of the plate tectonics, constraints accumulate in the earth’s crust. When these
constraints become superior to the resistance of the crust, the weakest zones (the faults) break
and a seism is triggered: the fault suddenly slips and a rupture propagates, generating waves
inside the earth. The larger the broken surfaces, the stronger the seismic magnitude, i.e. the
larger the quantity of energy emitted during the rupture, and the more amplified the earth
movements at the surface tend to be. If the seism is located in the ocean, it can cause a
tsunami.

12
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Figure 1: Anomaly map from seismic tomography: example of a subduction zone.
Red and blue colors denote slow and fast velocities, respectively. The faster the velocity, the cooler
the environment. The subduction phenomenon is highlighted: the cool crust part dives into the
warmer sub-environment. Figure extracted from [24].

When a seismic event occurs, waves are registered by seismograms of the IMS. This infor-
mation is used to cartography the earth and its properties: it is called seismic tomography. In
particular, arrival times of the shear waves are considered. Considering the difference between
the value of arrival time for typical values and wave behaviors versus real observations, anomaly
maps as in Figure 1 are built. This allows to characterize the general Earth structure. More
precisely, these arrival times are linked to the velocity field by the eikonal equation

|∇t(x)|2 =
1

v2(x)
, (1)

where x ∈ Ω ⊂ R2 is the current spatial position, t is the arrival time, and v : Ω → R+ is the
velocity field. Therefore, knowing the velocity field is sufficient to have a good approximation of
the times of arrival. It also allows finding the location of the seism and its rupture mechanism.

This general analysis is valid for acoustic tomography too. The difficulty resides in the
fact that the atmosphere is rapidly changing in time, in contrary to the Earth’s crust, which
enforces to model the environmental variations according to time at the considered time scale.
The weather also need to be taken into account.

13
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1.3 Modeling framework

In this study, we consider an heterogeneous domain Ω ⊂ R2, where the location of the sources
and the receptors are fixed. For each of the couples source-receptor, the times of arrival are
known. The objective is to solve the inverse problem associated to equation (1), i.e. to find the
underlying velocity field according to these observations as presented in Section 2.1.

In order to be computationally efficient and accurate, various tools are introduced in Sec-
tion 2. A new formulation of the velocity field is built in Section 2.2: hyperparameters are
taken into account without increasing the dimension of the problem. Moreover, surrogates are
used in Section 2.5 to diminish the computational cost.

An application is presented in Section 3. We consider a one dimensional field: the velocity of
the waves varies just according to the depth. For this model, results show that the formulation
of the velocity field through a reference basis leads to an accurate inference of this field, without
a strong a priori on the shape of the solution.

The interest of having a better knowledge of the velocity field is multiple. First, the wave
behavior prediction may be more accurate in future direct modeling. Second, in the context of
the CEA mission, precisely and efficiently characterizing the velocity field leads to the possibility
of doing the same for the location and the nature of a seismic event, which improves the
quality of the alert. Finally, having an error estimate on our predictions thanks to uncertainty
quantification is important to define the trust level of the alerts.

2 Modeling the problem

The objective of this section is to detail the problem and the mathematical tools used to
solve it. The inverse problem associated to seismic tomography is presented in Section 2.1.
A parametrization of the velocity field using a covariance function and a method to infer
the hyperparameters of this covariance function are introduced in Section 2.2. The Bayesian
formulation is then detailed in Section 2.3 along with the Markov Chain Monte–Carlo (MCMC)
sampling in Section 2.4. Finally, Polynomial Chaos (PC) surrogate models are described in
Section 2.5 in order to reduce the computational cost.

2.1 Definition of the inverse problem

Considering that Nobs observations are available, a relation between the times of arrival T =

{ti}16i6Nobs and the velocity field v is given in equation (1). Knowing the velocity field v, there

14
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exists a way to explicitly compute the time of arrival from a source s to a receptor r. This is
the direct problem, solved by an eikonal solver M :

M(v) = t : Ω× Ω→ R+.

The quantity t(s, r) characterizes the time of arrival of seismic waves for a source located in
s ∈ Ω and a receptor located in r ∈ Ω, as illustrated in Figure 2. In our case, a set of times of
arrival T is known, but not the velocity field. This leads to consider the inverse problem: we
seek the field v∗ minimizing the error between the observations tobs and the model prediction,

v∗ = argmin
v∈V

N∑
i=1

|tobs
i − ti(v)|, (2)

where the search space V is discussed in Section 2.2. We are searching for the field v that is
the most likely according to the observations, and not the one that is the nearest to the true
unknown field. The objective is to find a predictive field, that can explain and generate realistic
observations, contrary to an interpretative field, that accounts for the real characteristics of the
crust.

S1

S2

R1

t1,1, t2,1

R2

t1,2, t2,2

R3

t1,3, t2,3

Figure 2: Principle of seismic tomography: seismic waves are emitted by sources S = (Si)i and
registered by receptors R = (Rj)j. The data T = (tobs

i,j )i,j are obtained.

2.2 Representation of the velocity field

This section aims at defining the search space V of the seismic wave velocity field. The repre-
sentation of this field by its value at each point of a grid as done in full waveform inversion is
discarded from the outset because of its intractable computational cost in a Bayesian frame-
work. Given this, a first option is to use a layered model meaning that the seismic wave velocity

15
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is a piecewise constant (or linear) field [20]. An explicit parametrization must then be intro-
duced including the number of layers, their widths and dips as well as a type of velocity profile
in each layer (e.g. constant or linear). Although attractive since it relies on a moderate number
of parameters, this approach is restricted to simple profiles and suffers from a strong a priori
knowledge about the field parametrization and a high dependence of this knowledge onto the
optimization procedure.
A second option is to use a continuous model by means of a spatial covariance function [21].
Although more general, this approach requires to specify a type of covariance function (e.g.
squared-exponential or Matérn) and the set of associated hyperparameters such as the ampli-
tude and correlation length. In this section, we introduce the Karhunen–Loève (K–L) decompo-
sition and detail a method, called change of measure, implemented to infer the hyperparameters
of a given covariance function in order to decrease the a priori knowledge.

2.2.1 Framework

We are interested in the inference of a scalar velocity field v(x) on a spatial domain Ω ⊂
R2 → R+. To ensure the positivity of v(x), the logarithmic transformation u(x) := log(v(x))

is performed. In addition, the transformed velocity field u(x) is assumed to be a particular
realization of a Gaussian random field u(x, ω), ω denoting a random event belonging to a
sample space W of an abstract probability space (W ,S, P ). Separating the mean profile µ, we
have

u(x, ω) = µ+ Uq(x, ω), Uq ∼ N (0, k(·, ·, q)), (3)

where µ ∈ [µ−, µ+] ∈ R and the autocovariance function (or kernel) k(·, ·, q) depends on a set
of hyperparameters q ∈ H. The kernel is defined as

∀q ∈ H, ∀x,x′ ∈ Ω, k(x,x′, q) := Cov(Uq(x), Uq(x
′)) := Eω(Uq(x, ·)Uq(x′, ·)), (4)

where Cov(·, ·) and Eω(·) respectively are the covariance and expectation operators. The ex-
pectation operator is defined as

Eω(u(x, ·)) :=

∫
W
u(x, ω)dP.

Finding the true logarithmic field is then equivalent to finding the values µ, q, ω such that for
any x ∈ Ω, u(x) = µ+ Uq(x, ω).

16
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2.2.2 Karhunen–Loève decomposition

For a given q ∈ H, the K–L decomposition of Uq(x, ω) reads

∀x ∈ Ω, Uq(x, ω) :=
+∞∑
i=1

λ
1/2
i (q)ui(x, q)ηi(ω),

where the couples (ui(q), λi(q))i∈R?
+
i∈R?

+
are the eigenelements of the kernel and are obtained

by solving the Fredholm equation of the second kind,

∀x ∈ Ω, ∀i ∈ R∗+,
∫

Ω

k(x,x′, q)ui(x
′, q)dx′ = λi(q)ui(x, q). (5)

As Uq(x, ·) is a Gaussian random field, the K–L coordinates are independent and identically
distributed (i.i.d.) and follow a standardized Gaussian law. In addition, the K–L decomposition
is truncated into a finite number of terms r, leading to

Uq(x, ω) ' U r
q (x, ω) :=

r∑
i=1

λ
1/2
i (q)ui(x, q)ηi(ω), η := (ηi)16i6r ∼ N (0, Ir), (6)

where Ir is the identity matrix of size r.

Remark 1. The K–L decomposition is bi-orthonormal, in the sense that
(i) the eigenfunctions {ui(x)}i∈R?

+
are orthonormal,

∀i, j ∈ R∗+, 〈ui, uj〉Ω :=

∫
Ω

ui(x)uj(x)dx = δi,j, (7)

(ii) the coefficients (or coordinates) {ηi}i∈R?
+
are centered, non-correlated and of unitary vari-

ance:
∀i, j ∈ R∗+, Eω(ηi) = 0 and Eω(ηiηj) = δi,j.

�

Remark 2. Any kernel admits the following (truncated) spectral decomposition,

kr(x,x′) =
r∑
i=1

λ
1/2
i ui(x)ui(x

′). (8)

�

Remark 3. In this study, the squared exponential covariance kernel is used. This kernel is
also known as the Gaussian kernel but this name is not used here to avoid confusion with the
Gaussian distribution of Uq(x, ω). The squared exponential covariance kernel is

k (x,x′, {A, `}) := A exp

(
−‖x− x′‖2

2`2

)
,
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where ‖·‖ is the Euclidean norm. This kernel has two positive hyperparameters, the amplitude
(or variance) A ∈ R?

+ and the correlation length ` ∈ R?
+,

q = {A, `} ∈ H = [A−, A+]× [`−, `+] ∈
(
R?

+

)2
,

where A− and A+ (resp. `− and `+) are the minimum and maximum values of A (resp. `). �

In order to find the best approximation of v, we want to find the optimal values of η, µ and q.

2.2.3 Change of measure

The dependency of the eigenelements {ui(x, q), λi(q)}16i6r on the hyperparameters in the de-
composition (6) is problematic in a Bayesian inference context for two reasons. First, it induces
to solve the eigenvalue problem (5) for each new evaluation of the likelihood. Second, it requires
to introduce a change of coordinates to a fixed reference basis [21]. To avoid these pitfalls, we
propose to use the same decomposition basis regardless of the choice of hyperparameters; car-
rying the dependency of hyperparameters over the K–L coordinates. This decomposition, say
U
r

q(x, ω), reads

U r
q (x, ω) ' U

r

q(x, ω) :=
r∑
i=1

λ
1/2

i ui(x)ξi(ω), ξ := (ξi)16i6r ∼ N (0,Σ(q)), (9)

where
(
ui, λi

)
16i6r are the elements of the reference basis and Σ(q) is the covariance matrix

of the random coordinates ξ. The decomposition basis and the covariance matrix are now
introduced in definitions 1, 2 by using the mean Eq(·) over the hyperparameters domain H and
the inner product 〈·, ·〉Ω defined in (7).

Definition 1 (Reference basis)
The reference covariance kernel k is the covariance kernel k(·, ·, q) averaged with respect to q,
namely

∀x,x′ ∈ Ω, k(x,x′) := Eq(k(x,x′, ·)) :=

∫
H
k(x,x′, q)πq(q)dq, (10)

where π· denotes the a priori probability distribution of the quantity ·. The reference eigenele-
ments {ui(x), λi}i∈R?

+
, independent from q, are obtained by solving the eigenvalue problem for

the reference kernel, that is

∀x ∈ Ω, ∀i ∈ R∗+,
∫

Ω

k(x,x′)ui(x
′)dx = λiui(x). (11)

Definition 2 (Covariance matrix)
The covariance matrix Σ(q) of the K–L coordinates ξ is defined as

∀1 6 i, j 6 r, ∀q ∈ H, Σi,j(q) := (λiλj)
−1/2

〈
〈k(x,x′, q), uj〉Ω , ui

〉
Ω
. (12)
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Using this representation ensures that the error is minimized as shown in the following propo-
sition.

Proposition 1. Given the reference basis computed from Definition 1, then the covariance
matrix introduced in Definition 2 minimizes the error of representation in the L2-sense [21],

∀x,x′ ∈ Ω, Eq
[
Eω(U

r

q(x, ·)U
r

q(x
′, ·))− Eω(U r

q (x, ·)U r
q (x′, ·))

]
= 0.

Proof of Proposition 1. In order to best approximate the Gaussian process Uq, the covariance
kernel of U r

q must be close to k(·, ·, q). Let x,x′ be in Ω. The autocovariance of U r

q writes

Eω(U
r

q(x, ·)U
r

q(x
′, ·)) =

r∑
i,j=1

λi
1/2
ui(x)Eω(ξi(·)ξj(·))λj

1/2
uj(x

′),

(9)
=

r∑
i,j=1

λi
1/2
ui(x)Σi,j(q)λj

1/2
uj(x

′). (13)

Applying the mean operator Eq(·) to a covariance matrix term Σi,j(q), we have

Eq(Σi,j(·))
(12)
= (λiλj)

−1/2
〈
〈Eq(k(x,x′, ·)), uj〉Ω , ui

〉
Ω
, (14)

(10)
= (λiλj)

−1/2
〈〈
k(x,x′), uj

〉
Ω
, ui
〉

Ω
,

(11)
=

√
λj

λi
〈uj, ui〉Ω ,

(7)
= δi,j. (15)

Applying the mean operator Eq(·) to equation (13), we get

Eq
[
Eω(U

r

q(x, ·)U
r

q(x
′, ·))

]
=

r∑
i,j=1

λ
1/2

i ui(x)Eq(Σi,j(·))λ
1/2

j uj(x
′)

(15)
=

r∑
i=1

λiui(x)ui(x
′).

In addition, we have

Eq
[
Eω(U r

q (x, ·)U r
q (x′, ·))

] (4)
= Eq [kr(x,x′)]

(10)
= k

r
(x,x′)

(8)
=

r∑
i=1

λiui(x)ui(x
′).

The linearity of the operator Eq(·) concludes the proof.

2.3 Bayesian formulation

2.3.1 Bayes’ rule

The parameters set of the model defined by equations (3) and (9) includes the mean µ, the r
coordinates ξi and the hyperparameters q. A noise level parameter α ∈ R?

+ is also introduced
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to take into account the error measurements. Therefore, the total number of parameters is
d = r+|q|+2 and the objective is to infer the distribution of Y = {µ, ξ, q, α} ∈ Rd. The Bayes’
formula, used to compute the posterior of the parameters µ, ξ and the hyperparameters q as
well as the noise level parameter α, reads

ppost(Y |tobs) ∝ L(tobs|Y )πY (Y ), (16)

where L(tobs|Y ) denotes the likelihood and πY (Y ) the prior distribution of Y .

2.3.2 Likelihood function

The measurements are assumed to be corrupted by an observation noise having independent
Gaussian distribution with mean zero and covariance matrix αI, α ∈ R+. The misfit function
χ used to quantify the quality of a proposition is then the standard l2-norm,

χ(Y |tobs) :=
1

α2

N∑
i=1

(
tobs
i − ti(µ, ξ)

)2
, (17)

and its associated Gaussian likelihood writes

L(tobs|Y ) :=
1√

(2πα2)N
exp

(
−1

2
χ(Y |tobs)

)
. (18)

We remark that maximizing the likelihood is equivalent to minimizing the misfit function.

2.3.3 Prior distributions

Since the components of Y are independent, except for the K–L coordinates ξ that depend on
q, the prior distribution of Y is

πY (Y ) = πµ(µ)πξ(ξ|q)πq(q)πα(α).

An uniform prior is used for µ ∈ [µ−, µ+] ⊂ R,

πµ(µ) =
1

µ+ − µ−
.

As ξ ∼ N (0,Σ(q)), its prior is

πξ(ξ|q) =
1√

(2π)rdet(Σ(q))
exp

(
−ξ
>Σ(q)−1ξ

2

)
.
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Uniform priors are also used for the hyperparameters q ∈ [A−, A+]× [`−, `+] ⊂ R2
+,

πq(q) =
1

`+ − `−
× 1

A+ − A−
.

A truncated Jeffreys prior is chosen for the noise parameter α ∈ [α−, α+] ⊂ R+,

πα(α) ∝ 1

α
.

2.4 Markov chain Monte–Carlo sampling

The above mentioned posterior distribution does not have a closed-form expression and is
sampled using the Metropolis–Hastings (MH) algorithm [5, 12, 15]. The principle is to build a
MCMC (Y (i))i∈R+ that converges to a stationary distribution of parameters corresponding to
their most probable values. The different steps of the procedure are listed in Algorithm 1. The

Algorithm 1 Metropolis–Hastings algorithm.

Input: Y (0) ∼ πY (Y ), N . Initialization

1: for n = 1, . . . , N do . Iterations

2: Ynew ∼ πtr(·, Y (n)), . New state proposal

3: rMH = min

(
1,
ppost(Ynew|tobs)πtr(Ynew, Y

(n))

ppost(Y (n)|tobs)πtr(Y (n), Ynew)

)
, . MH ratio

4: Y (n+1) =

Ynew if u ∼ U(0, 1) < rMH,

Y (n) else.
. Acceptance or rejection

5: end for

Output: {Y (n)}

use of the MH criterion in line 3 guarantees the respect of the detailed balance principle. Indeed,
if the new state is more probable than the existing point, it is always accepted. However, if it
is a less probable state, the larger the relative drop in probability, the more likely the state is
rejected. Therefore, the chain tends to stay in high-probability regions of ppost(Y ), while only
occasionally visiting low-probability regions.

The proposal distribution used in line 2 is assumed to be Gaussian, that is

Ynew ∼ πtr(·, Y (n)) := N (Y (n), C(n)), (19)
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where the covariance matrix C(n) ∈ Rd×d is adapted every Nadapt iterations as done in [11] as
follows,

C(n) =


C(0) given if n = 0,

sdCov
(
Y (0), · · ·Y (n)

)
if mod(n,Nadapt) = 0 and N ≤ Nburn−in,

C(n−1) else.

The initial covariance matrix C(0) is chosen to be a diagonal matrix with entries (corresponding
to the variances of each parameters) proportional to the prior intervals. The factor sd only
depends on the dimension d, and its value is chosen to be sd = 2.42/d that corresponds to the
optimal mixing properties in the case of Gaussian targets and proposals [8]. Drawing a new
proposal Ynew is obtained from

Ynew = Y (n) + UΛ1/2U>Xnew, Xnew ∼ N (0, Id),

where the unitary matrix U and the diagonal matrix Λ come from the singular value decompo-
sition (SVD) C(n) = UΛU>.
The posterior distribution (16) needs to be computed.

Proposition 2. Considering that the parameters variables are independent, and that the like-
lihood is based on the squared Mahalanobis distance as in (18), it holds

π(Y |tobs) ∝ 1

αN+1det(Σ(q))1/2
exp

(
−ξ
>Σ(q)−1ξ

2

) N∏
i=1

exp

(
−1

2

(
tobs
i − ti(µ, ξ)

α

)2
)
, (20)

where R is a constant independent from Y .

Proof of Proposition 2. Using the prior distributions defined in Section 2.3.3, it holds

πY (Y ) =
1

µ+ − µ−
1

`+ − `−
1

A+ − A−
1

α

1√
(2π)rdet (Σ(q))

exp

(
−ξ
>Σ(q)−1ξ

2

)
.

As for the likelihood, using the expression of the misfit function (17) inside the definition of
the likelihood (18), we have

L(tobs|µ, ξ, α) =
1

(2π)N/2αN
exp

−
N∑
i=1

(
tobs
i − ti(µ, ξ)

)2

2α2

 ,

=
1

(2π)N/2αN

N∏
i=1

exp

(
−1

2

(
tobs
i − ti(µ, ξ)

α

)2
)
.
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Finally, according to the Bayes’ formula (16), the posterior distribution writes

ppost(Y |tobs) ∝ 1

(2π)N/2αN

N∏
i=1

exp

(
−1

2

(
tobs
i − ti(µ, ξ)

α

)2
)

× 1

α

1√
(2π)rdet(Σ(q))

exp

(
−ξ
>Σ(q)−1ξ

2

)
,

=
1

(2π)(N+r)/2αN+1det(Σ(q))1/2

N∏
i=1

exp

(
−1

2

(
tobs
i − ti(µ, ξ)

α

)2
)

× exp

(
−ξ
>Σ(q)−1ξ

2

)
,

since the constant factor due to the uniform priors of hyperparameters does not need to be
considered. The expression (20) therefore holds.

Numerically, it is better to consider the logarithm of rMH. The MH criterion thus becomes:
"Ynew is accepted if − log(rMH) < −log(s)" with s being the realization of an uniform law on
[0, 1]. Since πtr

(
Ynew, Y

(n−1)
)

= πtr

(
Y (n−1), Ynew

)
according to the transition proposal defined

in (19), this logarithm writes, in the case where the distribution ratio is inferior to 1 (else, this
is trivial):

− log(rMH) = log(ppost(Y
(n−1)|tobs))− log(ppost(Ynew|tobs)),

and using the Proposition 2, we obtain

− log(ppost(Y |tobs)) = R + (N + 1) log(α)

+
1

2

[
log det(Σ(q)) +

N∑
i=1

(
tobs
i − ti(µ, ξ)

α

)2

+ ξ>Σ(q)−1ξ

]
,

where the constant R, independent from Y , will not appear after computing the difference.

Remark 4. The empirical mean of the chain states converges almost surely to the target dis-
tribution provided that the search space is bounded as proven in [11], that is why we set
ξ ∈ [−20, 20]r and α ∈ [1.10−6, 0.1]. �

2.5 Surrogate models

Surrogate models consist in replacing expensive and accurate representations by cheaper ap-
proximations. In this work, these estimates are written with the tilde symbol ·̃.
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2.5.1 Traveltimes computation

In order to reduce the computational cost due to the extensive MCMC sampling, PC approxi-
mations {t̃i}16i6Nobs of the Nobs traveltimes {ti}16i6Nobs are computed,

∀1 6 i 6 Nobs, ti(µ, ξ) ' t̃i(µ, ξ) :=
∑
κ∈K

ti,κφκ(µ, ξ), (21)

where K is a set of multi-indices, {ti,κ}16i6Nobs,κ∈K are coefficients to determine, and {φκ}κ∈K
denotes the polynomial basis functions [10,23]. The standard PC are multivariate polynomials
orthogonal with respect to the uncertain parameters. As an example, Hermite and Legendre
polynomials correspond to normal and uniform distributions, respectively.

In our case, the K–L coordinates ξ follow N (0,Σ(q)), which depends on q. Yet, the goal is
that the likelihood, and consequently the surrogate, does not depend on the hyperparameters in
order to reduce the number of variables to r+1 instead of r+1+|q|. We choose ξ ∼ N (0, Ir) that
is satisfied by the coordinates ξ on average over the hyperparametric domain since Eq(Σ(·)) = Ir

from equation (14). The spectral coefficients {ti,κ}16i6Nobs,κ∈K in equation (21) are computed
using the sparse pseudo spectral projection (PSP) [17], see Appendix B for more details. In this
method, Ns sparse grid (SG) nodes are used to sample the standardized parametric domain
[0, 1]r+1, say (

µ
(s)
SG, ξ

(s)
SG

)
16s6Ns

.

The physical scaling are

µ(s) = µ− + (µ+ − µ−)µ
(s)
SG, and ξ(s) = F−1

N

(
ξ

(s)
SG

)
,

where F−1
N is the inverse of the cumulative distribution function associated to a standard Gaus-

sian variable. In order to obtain the final surrogate, the steps presented in Algorithm 2 are
performed.

2.5.2 Covariance matrix of the change of measure

We recall that Σ is defined in equation (12) as the projection of the parametrized covariance
kernel on the reference basis:

Σi,j(q) = (λjλi)
−1/2

〈
〈k(x, ·, q), uj〉Ω , ui

〉
Ω
.

The prior probability of ξ requires to compute Σ(q)−1 and det(Σ(q)). In order to guarantee
the positivity of the surrogate Σ̃(q)−1, the PC method approximates rather Σ(q)−1/2 using its
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Algorithm 2 Computation of the traveltime surrogate.

Input:
(
µ

(s)
SG, ξ

(s)
SG

)
16s6Ns

. Initialization

1: for s = 1, . . . , Ns do . Iterations

2:
(
µ(s), ξ(s)

)
, . Physical scaling

3: v(x) = exp

(
µ(s) +

r∑
i=1

λ
1/2

i ui(x)ξ
(s)
i

)
, . Associated velocity field

4: t(s) = (ti(v))16i6Nobs . . Eikonal solver
5: end for

6: {ti,κ}16i6Nobs,κ∈K, . PSP matrix computation
Output: (t̃i(µ, ξ))16i6Nobs

SVD. The PC surrogate of the coefficient Σ(q)
−1/2
i,j has the following form:

Σ(q)
−1/2
i,j ' Σ̃(q)

−1/2
i,j =

1√
A

∑
κ∈K

si,j,κψκ(`),

where si,j,κ are the spectral coefficients associated to the multi-index κ. Indeed, it is equivalent
to consider only q \ {A} as input for the surrogate and to scale the approximation by 1/

√
A as

explained in Appendix D. The method used to compute this surrogate is detailed in Algorithm 3.
The regularity of Σ in ` needs to be analyzed in order to define the maximal order of polynomials.

Algorithm 3 Computation of the covariance matrix surrogate.

Input: {`(1), · · · , `(Ns)} . Initialization with Latin hypercube sampling (LHS) method [13]

1: for s = 1, . . . , Ns do . Iterations

2: C = C(1, `(s)), . Covariance computation

3: Sig = Σ(1, `(s)), . Projection on the normalized reference basis

4: s(s) = U>Λ−1/2U . . By SVD of Sig

5: end for

6: S =
[
ψi(`

(s))
]
∈ R|K|,Ns . Matrix of PC basis functions evaluated at the LHS points

7: si,j = (S>S)−1S>si,j . Vector of spectral coefficients, using ordinary least-square (OLS)
method

Output: Σ̃−1/2(A, `) = 1√
A

Σ̃−1/2(1, `) . Final surrogate

Concerning the determinant, no surrogate is built since it does not improve the accuracy, neither
the computational efficiency.
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3 Application to a one dimensional field

The method studied in the previous section is applied to an example defined in Section 3.1.
The different choices for the implementations are presented in Section 3.2 and the reference
basis and its interest in this modeling are analyzed. Then, the same work is led concerning
the PC surrogates in Section 3.3. Finally, results of the MCMC inference are presented and
discussed in Section 3.4.

3.1 Case presentation

We consider a continuous one dimensional velocity field vtrue which is represented in Figure 3a.
This field is obtained from the realistic model Amoco [16], however, the associated observations
are computed thanks to a resolution of equation (1) by the eikonal solver (direct problem
associated to the inverse problem we consider) and then a Gaussian noise of 0.001s is added1.
This construction allows us to verify our algorithm on an example for which we control the
observations. The set of observations is composed of the times of arrival in 23 receptors from
5 sources, whose locations are detailed in Figure 3b. It is worth to note that the region of
inference depends largely of the geometry of the equipments: if no waves travel through an
area, it is a shaded zone and there is no information on it given by the objective function (2)
used in the inference. This remark is illustrated by the results of a sensitivity analysis (SA) in
Appendix C.

(a) True velocity field vtrue. (b) Sources and receptors locations

Figure 3: Continuous 1-D case: field and observations.

1For each observation, its value is set to tobsi = ti(vtrue) +X, with X ∼ N (0, 0.0012).
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3.2 Choice for implementations

Choice of parameters’ space. Even if the inference of parameters is a method used to not
define a priori the value of µ, A and `, it is necessary to set a priori bounds in order to compute
the associated reference basis and to have a bounded search space for the MCMC algorithm.
The choice is based on a physical a priori. The search space must be composed of velocity field
with values that are between 500 and 6000 m.s−1, based on the realistic velocities P waves can
achieve in the first kilometer of the Earth’s crust.

In order to assess the pertinence of different values, and to see the field dependency to the
parameters, several Gaussian processes are generated and the corresponding velocity fields are
plotted in Figure 4. The role of each parameter is clear:
• the mean µ defines the mean range of the values. Since the field is obtained by computing

the exponential, it is a factor term, which also explains the scale of the variation obtained
when increasing µ,
• the amplitude A defines as expected the amplitude of the values the velocity can take. The

larger A, the larger the spatial variance of the field. Since we consider here a continuous
case, too large amplitudes do not interest us,
• the length of correlation ` defines the length scale needed for the field to vary, and thus

its homogeneity. Here, very small length of correlation are not pertinent, the length of
correlation is around 1% to 20% of the spatial domain size.

The priors of these three parameters are assumed to be uniform on the intervals given in Table 1.

Parameter Bounds
µ [6.9, 8.1]

A [1.10−6, 1.10−1]

` [10, 150]

Table 1: Bounds used for shape parameters.

Computation of the reference basis. Thanks to the priors that we defined, the reference
basis is computed as defined in equations (10)-(11), considering that the reference covariance
kernel k is the limit of an empirical mean of random realizations. The convergence of this
method is shown in Figure 5. After this computation, it is possible to verify that the projection
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(a) µ = 6.9 (b) A = 0.001 (c) ` = 2

(d) µ = 7.5 (e) A = 0.01 (f) ` = 10

(g) µ = 8.1 (h) A = 0.1 (i) ` = 70

(j) µ = 8.7 (k) A = 1 (l) ` = 150

Figure 4: Velocity field v for different values of parameters µ, A and `.
Obtained considering v = exp(uKL), where uKL is the realization of a Gaussian process, with by
default µ = 7.9, A = 0.05 and ` = 20.
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on this basis is a good approximation of the true field. This approximation writes as

v = exp(u) = exp

(
µ+

r∑
i=1

λ
1/2

i uiξi

)
, with ξi = λ

−1/2

i u>trueui.

We compare the true field to the projected one in Figure 6. The field and its approximation
match almost exactly. When comparing the error on times of arrival with the eikonal solver,
it is clear that the error due to the projection is dominated by the noise present in the data
used for the inference. The error represented in Figure 6b is the absolute difference between
true times of arrival and computed ones, which corresponds to L1-norm errors. The projection
error is in the order of 10−4s while the noise of observation is around 10−3s.

Figure 5: Convergence of the empirical mean when computing the reference kernel k.

Interest of reference basis. The first advantage of the reference basis is to avoid a strong
a priori on the shape of the searched velocity field without increasing a lot the computational
cost. Moreover, the following analysis highlights the adaptation to various fields, in contrary to
parametrized basis, and the independence of the reference basis to the number of K–L modes
used.

In order to assess the pertinence of the reference basis when the shape of the field is not
known, the study introduced in Algorithm 4 is led. The mean normalized projection error is
then compared for the different bases. This comparison is shown in Figure 7. More precisely,
in Figure 7a, the mean normalized projection error is plotted according to the number of K–L
terms r and the used basis:

EB(r) = E`(εB(r, `)),
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(a) True field (green), projected field (blue), absolute er-
ror (red)

(b) Comparison between ttrue and t(vproj), and tobs

Figure 6: Comparison of the field projected in the reference basis with the true field. r = 20.

Algorithm 4 Study of reference basis interest.

Input: L` = [10, 150], Ng number of Gaussian processes, . Initialization

1: for ` ∈ L` do . Iterations

2: LB(`) = (ui(`), λi(`))16i6r, . Associated basis

3: for i = 1 · · ·Ng do
4: gi(`) = U{1,`}(·, ω), . Generation of Gaussian processes
5: end for
6: end for
7: for ` ∈ L`, i = 1 · · ·Ng, B ∈ LB do
8: gKL = 〈gi(`),B〉, . Projection on bases
9: err(gi(`),B) = ‖gi(`)− gKL‖2

L2 , . Projection error
10: end for

Output: {err(gi(`),B)}16i6Ng ,`∈L`,B∈LB

where E` is approximated by Monte–Carlo sampling over `, and

εB(r, `) =

∑
i err(gi(`),B)∑
i ‖gi(`)‖

2
L2

is the normalized error for a fixed number of K–L terms, basis, and length of correlation for the
Gaussian processes. In Figure 7b, r is set to 20 and the errors εB(r, `) are compared according
to ` and B. The reference basis is thus a way to minimize the error of representation when not
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(a) Mean (over `) normalized error according to r and B.(b) Normalized error according to ` and B for r = 20.

Figure 7: Comparison of projection error for different bases.

Figure 8: Shapes of different covariance kernels k(`).

knowing the true parameters of the field as explained in [21]: this basis is not optimal for any
`, since the best in that case is the basis associated to `, but it is the best choice on average
over `. Moreover, in the case where r is fixed, it also limits the maximal error to roughly 0.1%

whatever the length of correlation of the process.

This result is linked to the analysis of the basis eigenelements and corresponding kernel
shapes. These shapes are plotted in Figure 8. The larger the length of correlation, the larger
the covariance kernel. The reference kernel is not gaussian. In Figure 9a, the decay rate
λi/
∑

k λk is represented for different bases. The smaller the length of correlation, the slower
the decay rate. When the length of correlation is large, the information is concentrated on
the first modes. In contrast, the decay rate for the reference basis is asymptotically similar
(but with a smaller magnitude) to the smallest `, while having the same magnitude as the
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(a) Decay rate of eigenvalues λi/
∑

k λk (b) Eigenvector u20

Figure 9: Comparison of eigenelements for different bases.

largest ` for the first modes. As for the eigenelements, represented in Figure 9b for r = 20, a
smaller length of correlation leads to smaller scales of variations as expected, but also to smaller
variations on bounds of the space. The reference eigenvectors seems to be a trade-off between
the two extreme shapes. From a tomographic point of view, it can be interpreted by the fact
that large lengths of correlation are good to infer with few modes the general variations of the
fields, but that it cannot be accurate on small variations, even with increasing dimensions. In
contrast, small lengths of correlation are good to infer small variations, but need numerous
terms to infer the general shape, and cannot converge to a smooth functions, particularly at
the boundaries. These extreme cases are shown in Figures 10,12,11.

For a field with a small length of correlation ` = 10, the projection error on a projection
basis with a large value of ` stalls when increasing dimension as shown in Figure 10a. The choice
of a too large length of correlation leads to the impossibility to infer variations at small scales
as shown in Figure 12c in comparison with Figures 12b-12a. For a field with a large length
of correlation, the projection error is less important on both basis (Figure 10b), however, the
choice of a too small value of ` prevents the projection to converge to the true field, particularly
on the boundaries of the domain due to the shape of the eigenelements (Figure 11).

Note that the previous analysis is only led for `, which affects the shape of the eigenvectors,
and not for A, which is simply a scaling factor and thus integrated in the projection coordinates
in that study, see Appendix D for details.
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(a) Projection errors for a field with ` = 10

(b) Projection errors for a field with ` = 100

Figure 10: Influence of the basis on the
projection error.

Figure 11: Absolute projection error for a
large length of correlation field. r = 60.

(a) Projection on B(ref)

(b) Projection on B(` = 10)

(c) Projection on B(` = 100)

Figure 12: Projection for a small length of
correlation field. r = 60.
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3.3 Surrogate building and analysis

3.3.1 Surrogate for the change of measure

The surrogate of Σ is built as presented in Section 2.5.2. In Figure 13 are plotted different
values for Σ−1/2(1, `).

(a) Σ−1/2(1, ` = 20) (b) Σ−1/2(1, ` = 50)

(c) Σ−1/2(1, ` = 70) (d) Σ−1/2(1, ` = 100)

Figure 13: Values of Σ−1/2 according to `. A = 1.

Analysis of the coefficients. In order to better analyze the smoothness of the coefficients,
they are plotted according to ` in Figure 14. These plots highlight two points:

1. the values of the diagonal terms are exploding when increasing `;
2. the coefficients are either very smooth according to `, either their values are negligible.
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(a) Some diagonal terms of Σ according to `

(b) Last colum terms of Σ according to `

Figure 14: Coefficients of Σ according to `. A = 1.

For the point 1, this is due to the behavior of k(·, ·, q) when ` is increasing: its limits is 1r×r,
which leads to degenerated behavior for the length of correlation we consider. In order to
avoid that problem, partly induced by numerical inaccuracies, the superior bound for `, which
will be used to compute the surrogate of Σ and as bound for the search space in the MCMC
algorithm, is determined according to the number of K–L terms used. The defined criterion is
the following:

λr(`+)

λ1(`+)
> 10−9.

This leads to consider `+ = 100 for r = 20. As for the point 2, in order to reduce the
computational cost and saving, a study is led to see if it is possible to disregard PC coefficients
that are inferior to 10−6, since small values in the matrix are associated to small values of the
surrogate coefficients. For several values of A and `, Σ̃−1/2(q) is computed and compared to its
true value via the computation of the relative root mean squared error (RRMSE) of πξ(ξ|q),
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where the RRMSE of a quantity is defined by

RRMSE(Qtrue, Qapprox) =

√√√√∑N
i=1(Qtrue,i −Qapprox,i)2∑N

i=1Q
2
true,i

. (22)

Here, the true quantities of interest Qtrue,i are πξ(ξ(i)|q) computed with Σ̃(q) and the ap-
proximated quantities of interest Qapprox,i are πξ(ξ(i)|q) computed with Σ̃(q), setting the small
coefficients to zero. The set of coordinates (ξ(i))16i6NVP

is obtained by drawing NVP sam-
ples following a standardized Gaussian law2. The obtained RRMSEs are plotted in Figure 15.
The value being close to the threshold of numerical precision, this confirms the possibility to
disregard these coefficients.

Figure 15: RRMSE for Σ surrogate when disregarding small surrogate coefficients.

Influence of the surrogate degree. The influence of the maximal degree for the polynomial
function basis of the PC surrogates and the number of training point used to compute the PC
coefficients is analyzed. As shown in Figures 16a-16b, the choice of the degree is much more
important than the number of training point to approximate the values of interest. This can be
explained by the general smoothness of the functions: several points are sufficient to describe
them, however, the explosion in ` needs a high polynomial degree to be represented. Since the
number of training points is therefore responsible for the increase of the time of computation,
it is set to 1000. The last step is the choice of the maximal degree for the polynomial function
basis of the PC surrogates. As shown in Figure 14, the dependence is rather smooth, however,
some coefficients do have exponential behavior. In order to find a compromise between cost
and accuracy, the degree of approximation is iteratively computed as presented in Algorithm 5.

2The number of samples NVP is set to 100 in this study.
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(a) RRMSE for Σ̃ according to the number of train-
ing points NTP

(b) RRMSE for Σ̃ according to the surrogate degree

Figure 16: RRMSE for Σ surrogate according to the computations parameters. r = 20.

Algorithm 5 Choice of the PC surrogate degree.
Input: deg = 5 . Initialization of the degree.
S = Σ̃(deg)

R = RRMSE(S) . Computed by (22).
if R > 0.01 then

deg+ = 1 . Incrementation of the degree.
S = Σ̃(deg)

R = RRMSE(S)

end if
Output: deg, S

Results. In Figure 17 are presented the results for r ∈ {10, 20}. It is worth to note that the
exponential explosion of the Σ−1/2 coefficients leads directly to an explosion of the necessary
degree and a fast decreasing of `+ when increasing the number of K–L terms r. For 1000 exact
values with r = 20, the surrogate provides a 50× speedup over the exact computation: the
latter takes 0.82s versus 0.015s for the surrogate one.

3.3.2 Traveltime surrogate

The surrogate of the eikonal solver is computed as explained in Section 2.5.1. The polynomial
basis functions level is set to 3, which limits the degree of monomial at 7 and the sum of the
polynomials degree at 4. The input of the eikonal surrogate has dimension r + 1 (mean µ and
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(a) RRMSE for Σ̃ with r = 10. `+ = 150, degree
= 6

(b) RRMSE for Σ̃ with r = 20. `+ = 100, degree
= 12

Figure 17: Results after building Σ surrogate for different number of K–L terms.

K–L coordinates ξ). Choosing r = 20, the SG used to sample the training points contains 15135

points. Since in this study the MCMC algorithm is composed of 2× 106 steps, this reduces the
number of exact computations to less than 1% of the initial number.

The accuracy of the surrogate is assessed by computing the RRMSE defined in (22) with the
quantity of interest being the times of arrival. The result is plotted in Figure 18. In average,
the surrogate introduces an error of 1%. The speedup factor is even more important than the
one for the Σ surrogate, since 1000 exact computations can take up to 30 minutes with the
non-parallel current implementation, versus less than a second for the surrogate one.

Figure 18: RRMSE of the eikonal surro-
gate t̃ according to the observations.

Parameters Value/Range
µ, A, ` see Table 1
ξ [−20, 20]r

log(α) [−10,−3]

r 20

Nburn−in = Nsamp 1.106

Nadapt 5.104

diag(C(0)) [0.1, 0.05, 0.002, 0.2, 0.5, 0.05]

Table 2: Values/Range of parameters used
in MCMC inference.
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3.4 Results

3.4.1 Results of inference in reference basis

The MCMC inference is led with the parameters listed in Table 2. The coordinates ξ follows
N (0,Σ(q)), the large bounds just ensure to keep a bounded distribution. The logarithm of
the noise level α is used rather than its direct value in order to keep a relative symmetry and
reversibility during the exploration. The noise indeed follows a Jeffrey’s prior for the standard
deviation of a Gaussian distribution [2, 14]. However, using this prior while exploring the
possible states of the chain introduces a dissymmetry between the lower states of the current
one (that are a priori more likely) and the higher one (that are a priori less likely). Using
instead the log-uniform prior allows reestablishing the equilibrium. Denoting β = log(α) and
considering πα(α) ∝ 1

α
, an inverse transformation gives

πβ(β) =

∣∣∣∣∂α∂β
∣∣∣∣ πα(α) ∝ eβ

1

α
= 1.

The number of steps Nburn−in and Nsamp respectively are the number of steps with adaptation
of covariance matrix proposal every Nadapt steps and the number of steps used to sample the
posterior distribution.

First observations are the convergence of the computed times toward the observation times
along iterations, and the convergence of the covariance matrix proposal, plotted respectively in
Figures 19a and 19b. The error on observations is rapidly decreasing, and the covariance matrix
seems to converge to its final state since the Frobenius norm

∥∥C(Nadapt) − C(n)
∥∥
F is decreasing

while the norm of the difference between two successive covariance matrices tends to diminish.

(a) Convergence of times: error
∥∥tobs − t̃(Y (n))

∥∥ (b) Convergence of covariance matrix proposal:
Frobenius norm

Figure 19: Convergence study for the MCMC algorithm.
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Figure 20: Marginal posterior distributions of the K–L coordinates ξ.

Figure 21: Correlation between the first K–L coordinate ξ1 and the mean µ.

In Figure 20 are represented the marginal distributions of the K–L coordinates, which
correspond to the histogram of values taken in the sampling step. These distributions are
compared with the average along q with prior distribution N (0, 1). The first coordinates are
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rather well inferred, with narrow distributions containing the K–L projection coordinates, while
the distribution of the last ones remain close to their prior. A notable exception to this fact is
the first coordinate. It is due to the correlation between the mean µ and ξ1, which is shown in
Figure 21. As both µ and ξ1 are evolving along iterations, their values can compensate thanks
to the very smooth shape of u1. This leads to enlarge the posterior distribution support since
allowing more exploration.

(a) Marginal posterior distribution of the mean µ (b) Marginal posterior distribution of the amplitude
A

(c) Marginal posterior distribution of the length of
correlation `

(d) Marginal posterior distribution of the noise level
α

Figure 22: Marginal posteriors distribution of the parameters.

The marginal posterior distributions of the other parameters are plotted in Figure 22. The
selection of the subspace for the length of correlation during the MCMC algorithm is shown
in Figure 22c: even if the search space is very large (from 10 to 100), the maximum sampled
length scale is around 60. This ensures the possibility to use large search spaces when not
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having a strong a priori information without committing errors. It is also worth to note that
the marginal distribution of the noise level α is similar to a Gaussian centered on the true value
of noise. This validates the use of the log-uniform prior.

The distribution of Y is then used to compute a distribution of velocity fields by extracting
1% of the sampling chain elements and calculating the corresponding field. This posterior
distribution is compared to the prior distribution in Figure 23. The MCMC algorithm is
reducing the uncertainty of the field while keeping the true velocity field in the probable space.
The area below 650m keeps a large uncertainty, because of the fact that it is a shaded area.
The small reduction of uncertainty in this region is due to the inferred shape of the field:
since it is relatively smooth, the values and variations at the limit of the inferred domain gives
information on the behavior in the shaded area.

(a) Prior distribution of the field v (b) Posterior distribution of the field v

Figure 23: Distribution of the velocity field v.

The last analysis focuses on times of arrival, which are in reality the only available data if the
true field is unknown. First, in Figure 24a is plotted the distribution of the errors tobs

i − t̃i(Y (n))

compared to a centered Gaussian distribution with a standard deviation equal to 0.001, i.e. the
theoretical noise distribution. Both are similar, which indicates a good inference of the noise as
Figure 22d. This point is discussed more precisely in Section 3.4.3. The error on exact times of
arrival (computed with the eikonal solver) |ttrue

i − tcalc
i (v)| is compared for three different fields

to the error |ttrue
i − tobs

i | in Figure 24b. The three fields are
• the K–L projection of the true field on the reference basis,
• the maximum a posteriori (MAP) field,
• the mean field considering the posterior distribution plotted in Figure 23b.
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The two inferred fields leads to higher errors than the K–L projection, however, these errors
are in general lower than the noise added in the observations. This allows to conclude that it
is not possible to be more accurate with the data used to lead the inference.

(a) Histogram of errors tobsi − t̃i(Y (n))

(b) Comparison of errors |ttruei − tcalci (v)|. Blue: MAP; black: K–L projection; red: mean posterior;
green: noised observations.

Figure 24: Results concerning times of arrival.

3.4.2 Comparison with parametrized basis

The objective of this section is to compare the results obtained with the reference basis with
results obtained with different parametrized basis. Three cases are studied:
• B(` = 10): the assumed length of correlation is too small to explain accurately the velocity

field shape;
• B(` = 80): the assumed length of correlation is too large to explain accurately the velocity

field shape;
• B(` = `MAP): the assumed length of correlation is close to the MAP value, supposed to

explain accurately the velocity field shape;
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The first step is to assess that the optimal length of correlation `opt is close to the inferred `MAP

with r = 20. The optimal length of correlation is defined as the ` that minimizes the projection
error:

`opt = argmin`∈[`−,`+] ‖vtrue − vKL(`)‖L2(Ω) .

Solving this optimization problem, `opt is found to be equal to 49, which is not really in adequa-
tion with the distribution and the MAP value found by the MCMC inference (see Figure 22c).
The difference between both is explained by the fact that the data do not give information
about all the spatial domain Ω. The inferred length of correlation is therefore the length of
correlation that allows to have the most accurate representation of the inferred part of the field
Ωobs:

`opt = argmin`∈[`−,`+] ‖vtrue − vKL(`)‖L2(Ωobs) .

Considering that Ωobs = [1, 550], i.e. the domain on which information is available and accurate
stops at the depth of the last receptor, the optimal value of the length of correlation becomes
36, which is consistent with the inferred value.

Before inferring distributions with the parametrized MCMC algorithm, the best projection
fields are plotted in Figure 25. The three results are rather good approximation, however, as
explained in 3.2, the two extremal choice include defaults. The smallest length of correlation
cannot infer the smooth behavior on the top of the domain. As for the largest length of
correlation, its projection coordinates are really unlikely (up to 350 for the last modes), this
make the inference really difficult without a priori. The reference basis does not bring out these
hurdles.

The three field posterior distributions are represented in Figure 26. For the largest length
of correlation (Figure 26b), it is clear that the optimal coordinates are not achieved, even with
an enlargement of the search space. Moreover, the general problem is the same for the three
tests: fixing the shape parameters reduces the search space a lot and prevents from exploring
enough possibility to keep the true values probable. Therefore, even after inferring a first time
the field with reference basis, re-inferring using the MAP parametrized basis is not a way to
improve modeling. The use of a restrained reference basis using the mean over the posterior
distribution is investigated too. The best projection is compared to the projection on the initial
reference basis. The K–L coordinates are likely in both cases. This shows that a more accurate
basis does not lead to a more accurate projection: a second use of the MCMC algorithm is not
pertinent to improve the model.
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(a) B(` = 10)

(b) B(` = 80)

(c) B(`MAP = 34)

Figure 25: K–L projections of the velocity
field vtrue on parametrized bases.

(a) B(` = 10)

(b) B(` = 80)

(c) B(`MAP = 34)

Figure 26: Posterior distributions of the ve-
locity field v for parametrized bases.
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3.4.3 Error sources quantification

The inference of observations noise, whose results are presented in Figures 22d,24a, seems to
be very accurate. The model however does not take into account the other error sources. In
this section, a quantification of each source of error is performed. The model includes five main
type of errors:

1. the observations noise εobs, which is known in this application: its law is a Gaussian
centered law of standard deviation α = 0.001s,

2. the error of model (e.g. the use of the eikonal solver) εeik, which is set to 0 in this
application, since the eikonal model is used to obtain the observations (ttrue

i )16i6Nobs
.

3. the K–L truncation error εKL that is due to the representation error of the field,
4. the error induced by PC eikonal surrogate εPC, that accounts for the fact that only the

PC surrogate values are known during the MCMC algorithm,
5. the uncertainty error εMCMC, which results from the MCMC inference.

The true times of arrival can therefore be decomposed as follows

ttrue = tobs + εobs = t(vtrue) + εobs + εeik︸︷︷︸
=0

= t̃(vMC, KL) + εobs + εKL + εPC + εMCMC︸ ︷︷ ︸
:=εM

,

where the different errors can compensate each other. The modeling error εM accounts for
the final modeling error. It is quantified thanks to a set of fields V obtained by generation of
Gaussian processes with different lengths of correlation ` ∈ [10, 150].

Regarding εKL, it is evaluated by computing with the eikonal solver the times of arrival for
each velocity field v`,i ∈ V and comparing it with the times obtained for their corresponding
truncated field on the reference basis vKL,`,i. The RRMSE is plotted in Figure 27a.
The error induced by the use of PC surrogates is analyzed by comparing for each truncated
velocity field vKL,`,i the times of arrival computed with the eikonal solver t(v) and the ones
computed with the surrogates t̃(v). Using the truncated velocity fields is a way to discard the
truncation error. The RRMSE is plotted in Figure 27b.
Finally, the error due to the MCMC inference εMCMC is studied by comparing the times of
arrival in the posterior distribution to the time of arrival of the fields we seek to infer. In
order to get rid of the other error sources, the fields to infer are the truncated fields, and the
observations are obtained by computing the times of arrival with the PC surrogate and without
adding noise. The RRMSE is plotted in Figure 27c. Comparing the different obtained RRMSEs
to the one due to the noise in observation as done in Figure 28, the dominant source of error
seems to be the PC surrogate. However, results approximate very well the value of α even if
it infers in reality the global modeling error too. In order to understand this, the comparison
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(a) RRMSE t(v`,i) versus t(vKL,`,i):
εKL

(b) RRMSE t(vKL,`,i) versus
t̃(vKL,`,i): εPC

(c) RRMSE t̃(vKL,`,i) versus t̃(Y ):
εMCMC

Figure 27: RRMSE for the different error sources.

of times of arrival is also plotted for the application case in Figure 29. In this application,
the dominant source of modeling error is also the PC surrogate, as shown in Figure 29a, but
its order of magnitude is equivalent to the observation noise one. This is due to the fact that
the LHS validation set in the general case samples uniformly the search space, while the PC
training points, obtained by the building of a SG, brings less information about the area at the
domain limit. The search space explored during the MCMC algorithm is not uniform on all the
possible space, and remains in region where the PC approximation is accurate. Gathering all
the sources of errors, the final modeling error εM has yet the same order of magnitude as the
observation noise, as plotted in Figure 29b. The noise is represented by a centered Gaussian
variable of standard deviation α, so the associated mean absolute error is computed as α

√
2
π
.

Reducing the noise of observation would lead to have another dominant error that will be the
one inferred with α. In real applications, the objective is to have a noise of observation that
is greater than the other uncertainties due to the modeling. According to Figure 28, it could
therefore be useful to improve the PC surrogate.

4 Discussions and perspectives

4.1 Discussions

4.1.1 Increase of the parameters number

Since the objective is to infer the velocity field with the less a priori as possible, more general
shapes of fields are investigated.
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Figure 28: Comparison of errors in the general case.

(a) Comparison of error on times for the different
error sources inferring vtrue

(b) Comparison of global error on times inferring
vtrue

Figure 29: Comparison of errors in the application case.

Increasing the hyperparameters number: use of the Matérn’s kernel. The Matérn’s
kernel is a general type of covariance kernel that includes the exponential one and admits the
squared exponential one as its limit [9, 22]. It writes

∀(x,x′) ∈ Ω2, k(x,x′, q) = A
21−ν

Γ(ν)

(
√

2ν
‖x− x′‖2

`

)ν

Kν

(
√

2ν
‖x− x′‖2

`

)
,

where ν > 0 (and generally < 100) is a supplementary parameter to infer, Γ is the Gamma
function and Kν is the modified Bessel function of the second kind. Using this kernel increases
thus the dimension of the set q by 1. The interest of the change of measure method is the fact
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that this increase in dimension does not pass on the computation of the eikonal surrogate and
therefore does not make the cost of the inference grow a lot. As shown in Figure 30, the squared
exponential reference kernel used in the study of Section 3.4 can be very well approximated
by a parametrized Matérn’s kernel with length of correlation ` = 92.4 and supplementary
parameter ν = 0.89. This is a supplementary argument to explore the Matérn’s kernel as
a possible covariance kernel for velocity fields. The influence of both parameters ` and ν is

Figure 30: Comparison between the reference squared exponential kernel kg(ref) and the
parametrized Matérn’s one km(` = 92.4, ν = 0.89).

highlighted in Figure 31. While the length of correlation controls the scope of the kernel, the
supplementary parameter rather controls the shape of it: the larger the parameter, the more
the kernel ressembles a Gaussian curve.

(a) Influence of ` on the kernel shape. ν is set to 1. (b) Influence of ν on the kernel shape. ` is set to 90

Figure 31: Parameters influence on the Matérn’s kernel shape.
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Projections of the velocity field on different parametrized basis are computed and compared
to the projection on the reference squared exponential basis in Figure 32. The optimal value
for ν seems to be between 1.5 and 2 whatever the length of correlation. As for this latter,
the error decreases with `. However, it converges exponentially so there is no interest to use
too large lengths of correlation. The comparison with the projection error for the squared

(a) Projection error for reference subspace. (b) Projection error for larger ` and reduced
space for ν.

Figure 32: Search for best Matérn’s kernel parameters in the sense that they minimize the
projection error.

exponential reference basis in Figure 33a, 33b assesses the pertinence of the Matérn’s kernel
use. The reference Matérn’s kernel is built considering ` ∈ [10, 150] as the Gaussian’s one, and
ν ∈ [0.2, 5]. The shape of it is shown in Figure 31 (black curve). The resulting projection is
computed and given in Figure 34a. The error is of the same order of magnitude as for the
reference squared exponential basis. However, this reference kernel is actually very similar to a
parametrized one as shown in Figure 34b. This reduces a lot the interest of using a reference
basis, since it does not bring any supplementary information than a parametrized one.

As a conclusion, the parametrized Matérn’s projection may best approximate the field
than a squared exponential one. Using the change of measure in its case results in a similar
parametrized shape. Concerning the utility of this parametrized shape, it is necessary to
compare it to the squared exponential reference one on a set of velocity fields. The best basis
to use is the one that gives in average the best projections (best according to the L2-norm),
and that limits the maximal projection error (best according to the L∞-norm). However, the
use of the reference Matérn’s kernel, even if it is similar to a parametrized one, presents an
advantage over it. It allows exploration on hyperparameters space, which results in limiting
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(a) Projection error for ` = 100. (b) Projection error for ν = 1.6.

Figure 33: Projection errors on Matérn’s parametrized bases. Comparison with the squared
exponential reference basis.
Norm used is ‖vtrue − vKL(r = 20,B)‖L2 . Compared only for the projection of the continuous 1-D
field introduced in Section 3.1.

(a) Comparison of the true velocity field and its pro-
jection on Bm(ref).

(b) Comparison between reference Matérn’s kernel
and parametrized one.

Figure 34: Results for the reference Matérn’s kernel.

the overfitting, as seen in Section 3.4.2.

Introducing a spatial dependency for the mean. Another way to precise the model is
to not consider anymore a mean µ that is constant along the depth z. This constant mean is
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(a) Projection on parametrized basis. ` = 29 (b) Projection on reference basis.

Figure 35: Preliminary results using non constant mean µ = A+ bZ.

replaced by the following formulation, where (a, b) ∈ R+ × R:

v(z) = azb × exp

(
r∑
i=1

λ
1/2

i ui(z)ξi

)
.

This gives the following form for the logarithmic quantity u

u(z) = log(a)︸ ︷︷ ︸
:=A

+b log(z)︸ ︷︷ ︸
:=Z

+
r∑
i=1

λ
1/2

i ui(z)ξi.

This model generalizes the previous one, since taking b = 0 is sufficient to retrieve µ = A.
Contrary to the use of supplementary parameter in the covariance function as in the building
of Matérn’s kernel, this adds a dimension to the inference of the PC surrogate.

Finding the optimal parameters A and b is easy when the field is known since it consists in
a linear regression. The optimal length of correlation for the parametrized basis is found to be
29. Both the projection on the best parametrized basis and on the reference basis are plotted
in Figure 35. In order to keep the same number of variables, the number of K–L terms is set
to r = 19 instead of 20. This allows as the Matérn’s kernel to better approximate the top of
the domain. The trade-off between this gain and the loss of computational time due to the
increasing of the dimension has to be determined.

4.1.2 Robustness of the method to the data

The application in Section 3 is an ideal case where a lot of accurate data are known on the
inferred domain. It could be interesting to test the robustness of the method to different noises
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and to a lack of data.

Robustness relatively to the noise. Changing the magnitude of the noise level α, and even
changing the observed times of arrival without changing the noise law is a way to study the
results dependency to this parameter. The results dependency to the noise will be quantified
through the measure of adequation between the posterior distributions for the velocity fields
and the times of arrival. The Kolmogorov–Smirnov test [19] could be used in order to verify if
the results are robust (and therefore independent) to a change of noise with keeping the same
law for it. To quantify the influence of a change of this law, the Kullback–Leibler distance [1]
between posterior distributions could be considered as a first step.

Robustness relatively to the data. The results of Section 3.4 will be put in perspective
with the same inference led with only 50% of the receptors stations. The times of arrival of
the posterior possible fields will be compared to the true data and the distribution of them
according to the added noise. As for the noise, the Kullback–Leibler distance will be a first
step to quantify the resulting change in times of arrival distributions.

4.2 Perspectives

This six-months internship is a preliminary work for a PhD thesis. In the following, some
current hurdles and points of improvement are highlighted.

Convergence of the MCMC algorithm. The update of the covariance allows the MCMC
algorithm to converge toward a local minimum. Indeed, without update, it is possible to find
a state which has a good posterior and never moves to a very near state that is better.
In order to ensure convergence toward the global minimum, another strategy must be put in
place, like the running of several chains in parallel, or the introduction of a criterion to scale
the proposition matrix balancing the exploration/exploitation criterion.
It can be difficult, when the true values are not known, to qualify and quantify the superiority
of a result versus another. The scatter plot of the values through the iterations is an indicator
of the exploration of the space: if the values are converging too fast, maybe there was no
convergence toward a local minimum.

Two-dimensional case. The approach developed in this report is applicable on two dimen-
sional fields. The difficulty in that case is the needed number of K–L terms to have an accurate
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approximation of the field. This brings out the interest to use supplementary reduction meth-
ods, that implies for instance to better model the error sources and to use adaptive models, as
presented in the following paragraphs.

Error models. As discussed in Section 3.4.3, the quantification of the different sources of
errors is a crucial point to assess the pertinence of a solution and to know how to improve the
method. The main error sources are
• the observation noise εobs,
• the error of model (e.g. the use of the eikonal solver) εeik, which is generally considered

as negligible toward the others,
• the truncation K–L error εKL,
• the surrogate error εPC due to the PC approximation,
• the uncertainty error εMCMC, which results from the MCMC inference.

The true times of arrival are decomposed as follows

ttrue = tobs + εobs = t(vtrue) + εobs + εeik = t̃(vMC, KL) + εobs + εeik + εKL + εPC + εMCMC.

The PC error is itself a sum of two different errors: the truncation error εPC, lev due to the choice
of the level for the polynomial projection basis, and the error on coefficients εPC, coef, which
comes from the sampling method and the corresponding introduced bias in the coefficients
computation. A trade-off between the computational cost and the accuracy of the model
remains to be theoretically defined. Another way to limit the error is to consider the variability
of all the modes in the K–L truncation, even if only the r-th first are inferred. That is to say,
the velocity field vrKL, instead of being the K–L projection truncated to r terms, is a mean of
the behaviour on the highest modes:

vrKL =

∫
Ξ={X={ξk, k>r}}

exp

(
µ+

∞∑
i=1

λ
1/2
i uiξi

)
πξ(X)dX.

Adaptive models. Many parameters are set by default in the current analysis. In particular,
for the eikonal model, a step of discretization is chosen, and for the different surrogates, a set
of training points and a maximum level for polynomial basis is set. These choices are made
according to a trade-off between the computational cost and the accuracy. In reality, a surrogate
model does not need to be accurate uniformly on its defined space, but only on a subspace of
interest. In order to take this into account, it is interesting to investigate adaptive models and
multi-fidelity ones.
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The adjustment of a model is for instance the addition of training points on the subspace
of interest. As seen in Section 3.4.3, the eikonal surrogate is less accurate on the bounds
of the search space. In reality, during the inference, these bounds are not achieved and the
approximation is better than the average. If, as in the application, the inferred error is of the
same order of magnitude than the surrogate’s error, one could add training points to improve
the model. These training points would be chosen according to the posterior distribution after
the inference. This would allow to improve the subspace of interest by infill sampling. This
approach is to put in perspective with the bias it brings out: being more accurate in a subspace
could lead the optimization to stay in that subspace without exploring anymore. The use of
more types of data in an adaptive framework is considered too. First the general shape of
the field is inferred thanks to times of arrival, then polarization is used to discriminate the
posterior fields, and finally a local optimization is performed thanks to a full-wave form model.
This method is close to a multi-fidelity one.

Multi-fidelity methods consists in defining several models that have different accuracies and
computational costs. For instance, an eikonal solver with a fine-mesh discretization tH , accurate
but expensive to compute would be the high-fidelity model, while a coarse-mesh solver tL would
be the low-fidelity model. Combining both knowledge with the computation of some precise
points and much more inaccurate ones allow building and enriching a model at low cost [18].

Source location. The interest of a better knowledge of the velocity field is above all the
possibility to improve source location and characterization. Two points are raised:
• what is the impact of the field inference on the source location compared to a known

determined field ?
• how does the field uncertainties propagate to the location uncertainty ?
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5 Conclusion

The built surrogate models and the implementation of the algorithm solving the correspond-
ing inverse problem meet the different expectations. In the studied case, the velocity field is
indeed well-inferred, and the associated uncertainties are in adequation with the geophysical
observations. Moreover, the use of several surrogate models allows a drastic improvement of
the computation cost, while limiting the induced error. The numerical implementation with
Matlab will be converted in Python for the following studies, in order to be more adaptable
and user-friendly. The factorization of the code already eases the test of several configurations.

From a geophysical point of view, this approach opens new possibilities to qualify and quan-
tify uncertainties linked to seismic tomography, and therefore to improve the risk assessments.
As for the mathematical framework, the use of surrogate models and first and foremost the
change of measure is innovative in this domain of application.

The major issue of this model is the increase in dimension of the field, that will be possible
by using reduction methods and adaptive approaches. The use of this method for the location
of the event will be considered too.
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Mathematical symbols

A Amplitude of the Gaussian process, ∈ R?
+. 18

Ω Spatial domain, ⊂ R2. 13

Σ Covariance matrix of the K–L coordinates ξ, Σ : H→ Rr×r. 18

α Noise level, corresponds to the standard deviation of the observation noise, ∈ R?
+. 20

η Set of K–L coordinates (ηi)16i6r associated to a decomposition on a parametrized basis,
η ∼ N (0, 1). 17

ξ Set of K–L coordinates (ξi)16i6r associated to a decomposition on a reference basis, ξ ∼
N (0,Σ(q)). 18

x Point of the spatial domain, ∈ Ω. 13

` Length of correlation, ∈ R+. 18(
ui, λi

)
Eigenelements associated to a reference covariance kernel k(·, ·). 18

(ui(q), λi(q))i∈R?
+

Eigenelements associated to a parametrized covariance kernel k(·, ·, q). 17

H Hyperparameters space. 16

µ Mean of the Gaussian process, ∈ R. 16

k Reference covariance kernel of the Gaussian process, k : Ω× Ω→ R. 18

π· Prior distribution of variable ·. 18

·̃ Surrogate of the quantity ·. 23

k Covariance kernel of the Gaussian process depending on hyperparameters q, k : Ω×Ω×R|q|+ →
R. 16

q Set of hyperparameters for the covariance kernel k. In general, q = {`, A}. 16

r Number of K–L terms, ∈ N?. 17

t Time (in s), ∈ R+. 13

u Logarithm of the velocity field, u = log(v). 16
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v Velocity field (in m.s−1), v : Ω→ R+. 13

z Depth (in m), ∈ R+. 51
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Mathematical acronyms

i.i.d. independent and identically distributed . 17

K–L Karhunen–Loève. 16–18, 20, 24, 29, 30, 35, 37, 38, 40–46, 52–54, 63, 67

LHS Latin hypercube sampling . 25, 47

MAP maximum a posteriori. 42–44

MCMC Markov Chain Monte–Carlo. 14, 21, 24, 26, 27, 35, 38, 39, 41, 42, 44, 46, 47, 53, 54,
65, 66

MH Metropolis–Hastings . 21, 23

OLS ordinary least-square. 25

PC Polynomial Chaos . 14, 24–26, 35–37, 46, 47, 52, 54, 62, 63

PSP pseudo spectral projection. 24, 25, 62

RRMSE relative root mean squared error . 35–38, 46, 47, 65, 66

SA sensitivity analysis . 26, 64–66

SG sparse grid . 24, 38, 47, 62, 63

SVD singular value decomposition. 22, 25

61



Ecole des Ponts ParisTech - Internship report M2 Research

Glossary

eikonal Describing the properties of a class of partial differential equation encountered in
descriptions of wave propagation. 13, 15, 26, 29, 37, 38, 42, 46, 49, 54, 55, 63, 65

P waves For pressure or primary waves. One of the two main types of seismic body waves.
27
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Acronyms

CEA Commissariat à l’Énergie Atomique et aux énergies alternatives . 10, 11, 14

CTBT Comprehensive Test Ban Treaty . 12

CTBTO Comprehensive Nuclear-Test-Ban Treaty Organization. 11

DAM Direction des Applications Militaires . 10, 11

IAEA International Atomic Energy Agency . 11

IMS International Monitoring System. 12, 13

NTP Non-Proliferation Treaty . 12
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Appendix A International Monitoring System map

64



Ecole des Ponts ParisTech - Internship report M2 Research

Appendix B Smolyak pseudo-spectral projection

In this section, the computation of PC coefficients thanks to a SG and a PSP is explained. This
method is based on [3,4]. The objective is to calculate, for any multi-indice κ in the considered
multi-indices set K, the corresponding coefficient cκ, knowing that the PC surrogate model of
the function f writes

f̃(X) =
∑
κ∈K

cκφκ(X),

where X ∼ U([−1, 1]d) and {φκ}κ∈K is a basis of Legendre’s polynomials. By projecting the
surrogate on the basis, it holds

∀κ ∈ K, cκ =

〈
f̃(X), φκ(X)

〉
‖φκ(X)‖2 ,

where ‖φκ(X)‖2 = 1 considering an orthonormal basis. The scalar product to compute is a d-
dimensional integral, which is exponentially expensive to compute when increasing dimension.
In order to decrease this computational cost, a Smolyak tensorization is done. This consists in
using a sparse sampling grid and calculating only the coefficients for k ∈ K ⊂ Nd such that no
aliasing is introduced. This sampling grid is deterministic and every level of discretization is
nested within each other.

Here, a Fejér grid of type II is used to determine the set of points Slr of level l in dimension
r [6]. In one dimension, the set is obtained by the univariate quadrature rule and is denoted
Ql. The cardinality of this set according to the level l > 0 is equal to |Ql| = n(1, l) = 2l+1 − 1.
The maximal degree of the associated monomials is dmax = 2l+1. The levels being nested with
each other, for any l > 1, n(1, l)−n(1, l− 1) = 2l. The increase of dimension with the Smolyak
tensorization writes

Slr =
l∑

i=1

(Qi −Qi−1)⊗ Sl−ir−1,

setting Q−1 = S−1
r = ∅ by convention. In terms of number of points, it holds

n(r, l) =
l∑

i=0

(n(1, i)− n(1, i− 1))× n(r − 1, l − i) =
l∑

i=0

2i × n(r − 1, l − i).

Analyzing this double recurrence in l and r leads to find

n(r, l) = 2l+1

r−1∑
k=0

(
l + k

l

)
(−1)r−1−k + (−1)r.
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For level l equal to 3, as used in the application to compute the PC surrogate of the eikonal
solver in Section 3.3, the number of points exponentially increases and becomes too expensive
around dimension r = 30 as shown in Figure 36. In order to increase the K–L truncation
dimension, other sampling methods need to be discussed. For instance, one could use the fact
that highest modes are energetically less important and therefore that a lowest density sampling
is sufficient in the corresponding dimensions.

Figure 36: Size of the Smolyak’s SG using Fejér’s type II quadrature rule according to the
dimension for level l = 3.

66



Ecole des Ponts ParisTech - Internship report M2 Research

Appendix C Spatial sensitivity analysis

In order to quantify the possibility to infer the velocity for any depth z, a SA is performed.
The goal is to see in which measure a perturbation in the velocity field leads to a change in the
observations.

C.1. Perturbation of the field

From the true velocity field, a set of perturbed velocity fields is obtained, considering the
addition of a random Gaussian noise that is moved on the depth axis. If the perturbation is
centered on zc, the Gaussian noise at this point ζ(zc) follows N (0, p2) where p is the maximum
percentage of the perturbation relatively to the true field. In order to keep a physical field, the
perturbation is smoothed thanks to a squared exponential kernel, which has an amplitude σ2:

ζ(z) := ζ(zc)× exp

(
−(z − zc)2

2σ2

)
.

This noise is then introduced in the velocity field:

vperturbed(z) := (1 + ζ(z))v(z).

In this analysis, p is chosen equal to 5% and σ2 to 15. An example of generated noise and its
application on the field is shown in Figure 37.

(a) Gaussian noise (b) Perturbed field, zc = 100 (c) Perturbed field, zc = 500

Figure 37: Example of noise generated for the perturbation of the field and associated perturbed
fields.

C.2. Results of sensitivity analysis

Computation of observations. Ten random Gaussian noises are generated (ζ1, · · · , ζ10).
For each of them, the resulting perturbed field is build for any zc ∈ [σ2 + 1, zmax − σ2]. Then,
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the eikonal solver is used to obtain the observations associated to each field: for each noise ζ,
for each center of perturbation zc, for each observation i, tzc,ζ,i is obtained.

Definition of “influence”. A spatial zone is considered as influent if a perturbation on this
area leads to a significant difference in the observations. This difference is computed as the
RRMSE:
• For each zc, for each observation i, a RRMSE is computed thanks to the 10 random

perturbations:

RRMSE(zc, i) =

√√√√∑16k610(tobs
i − tzc,ζ,i)2

K
(
tobs
i

)2 .

• These RRMSEs are then gathered in a global RRMSE, considering all the observations
at the same time:

RRMSEglob(zc) =

√ ∑
16i6N

RRMSE(zc, i)2.

Results. This indicator is plotted in Figure 38a. It is put in perspective with the results
obtained by the MCMC inference in Figure 38b. The shaded areas for z < 50 and z > 680

seem to be explained by this SA: perturbations in these regions do not have any impact on the
observations, making the inference impossible. This could be explained by the lack of sources
and receptors in these zones (see Figure 38c), this assumption being tested later in Section C.3..

(a) Observations RRMSE accord-
ing to zc

(b) Velocity fields. Green: true;
blue: obtained with the MCMC al-
gorithm.

(c) Position of the sources and re-
ceptors

Figure 38: SA results: top and bottom area cannot be inferred with the observations.

C.3. Addition of receptors

In order to confirm this analysis, the same procedure is repeated, considering two added recep-
tors at the top of the zone of interest, as represented in Figure 39c. Using the previous MCMC
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algorithm of Section 2.4 with these two more receptors, we obtain the results in Figure 39b. It
becomes clear that adding receptors in the region reinforces the influence of it and allows to
infer the velocity field in it.

(a) Observations RRMSE accord-
ing to zc

(b) Velocity fields. Green: true;
blue: obtained with the MCMC al-
gorithm.

(c) Position of the sources and re-
ceptors

Figure 39: SA results with two supplementary receptors: top area is now inferred too, in
contrary to bottom one.

Finally, in order to distinguish two different border regions, the following results will use the
two added receptors. It allows to separate the case of the top region, where we have information,
from the case of the bottom region, where there is still no receptor nor source. It is worth to
say that in a real case, knowing the influence of each area on the observations is a good way to
quantify the possibility to infer this zone, and thus to reduce the dimensionality of the problem.
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Appendix D Link between projection and amplitude

The amplitude of the kernel A does not influence directly on the projection. Indeed, if the
length of correlation ` is fixed, it holds

k(x,x′, A = a, `) = a exp

(
−‖x− x

′‖2

2`2

)
= ak(x,x′, A = 1, `),

and then, for the eigenelements,∫
Ω

k(x,x′, A = 1, `)ui(x
′, A = 1, `)dx′ = λi(A = 1, `)ui(x, A = 1, `),

=

∫
Ω

1

a
k(x,x′, A = a, `)ui(x

′, A = 1, `)dx′ = λi(A = 1, `)ui(x, A = 1, `),

⇐⇒
∫

Ω

k(x,x′, A = a, `)ui(x
′, A = 1, `)dx′ = aλi(A = 1, `)ui(x, A = 1, `),

i.e. (λ(A = a, `), u(x, A = a, `)) = (aλ(A = 1, `), u(x, A = 1, `)). This scaling directly
reverberates on the K–L coordinates computation:

ηi(A = a, `) =
uTtrueui(A = a, `)

λ
1/2
i (A = a, `)

=
uTtrueui(A = 1, `)√
aλi(A = 1, `)

=
ηi(A = 1, `)√

a
.

This leads to the exact same projection:

uKL(A = 1, `) = µ+
r∑
i=1

λ
1/2
i (A = 1, `)ui(A = 1, `)ηi(A = 1, `),

= µ+
r∑
i=1

√
aλi(A = 1, `)ui(A = 1, `)

ηi(A = 1, `)√
a

,

= µ+
r∑
i=1

λ
1/2
i (A = a, `)ui(A = 1, `)ηi(A = a, `) = uKL(A = a, `).

To conclude, the amplitude just scales the projection coordinates.
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