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POLETTE Nadège∗†, SOCHALA Pierre∗, GESRET Alexandrine†, LE MAÎTRE Olivier+
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Context

The fight against nuclear proliferation consists in the first place in overseeing
the respect of the international treaties. In that context, numerical tools are
developed in order to monitor the environment and analyze seismic events.
In particular, when an earthquake occurs, the displacement of the ground is
recorded by seismometers. The accurate identification of an event can be difficult,
since it requires to solve an inverse problem where available observations and
velocity field models used for forward simulations are uncertain. We focus on
the velocity field uncertainty quantification.

Set-up of the problem

� Goal: characterization of a physical field f
thanks to indirect observations dobs knowing
a forward modelM.

dobs =M(f ) + ε

� Probabilistic framework

Bayes rule

ppost(f |dobs) ∝ L(dobs|f )π(f )

� Metropolis–Hastings algorithm
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⇒Difficulties: (i) infinite dimensional character of f
→ Karhunen–Loève decomposition [2, 3],

(ii) evaluation cost ofM at each step
→ Polynomial chaos surrogate [1, 4].

� f ∈ L2(Ω): particular realization of a Gaussian process G ∼ N (µ, k)

Karhunen–Loève decomposition

f (x) = G(x, θ) ' µ+
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where (λi, ui)i∈N∗ are the eigenelements of k and η ∼ N (0, 1).

� The posterior quantity becomes

ppost
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)
∝ L̃(dobs|f )π(η).

Change of measure method

In fact, k depends on hyperparameters q that are difficult to choose a priori :

ppost

(
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)
∝ L̃(dobs|f (q))π(η, q).

We present a method to explore the hyperparameters space dur-
ing the inference, while mitigating the computational cost.

� Introduction of a reference basis obtained from an average procedure over
the hyperparameters space prior [6]:
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where (λi, ui)i∈N∗ are the eigenelements of k = EH(k(q)) =

∫

H
k(q)π(q)dq.

� The q-dependency is transferred to the law of ξ:

ppost
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)
∝ L̃(dobs|f )π(ξ(q))π(q).

Law of reference coordinates

ξ ∼ N (0,Σ(q)),

where Σ(q)ij = (λiλj)
−1/2 〈〈k(q), ui〉Ω , uj〉Ω .

� Σ is smooth along q: possible surrogate Σ̃
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Fig. 1 – Worflow for the change of measure method
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Application to seismic tomography

The method is applied on a seismic tomography
problem. We consider a 1D continuous veloc-
ity field inspired by the realistic model Amoco
Tulsa Research Lab (O’Brien, 1994) and gener-
alizing layered fields [5]. The posterior distribu-
tion of the velocity field is plotted in Fig.2, and is
compared to the results of inferences with fixed
hyperparameters (Fig.3(a)-(b)-(c)). We observe
that, for a close computational cost, the explo-
ration of the hyperparameters space yields a bet-
ter estimation of uncertainties.

Fig. 2 – Result with change of measure

Fig. 3(a) – Inference with fixed small q

Fig. 3(b) – Inference with fixed medium q

Fig. 3(c) – Inference with fixed large q

Conclusion and perspectives

� Fast and accurate method to provide uncertainties on a physical field

� Further work:

� Propagation of the uncertainties to source location

� Use of surrogate maps for the forward model

� Adaptive inference

Fig. 4 – Illustration of the location source problem (Marmousi velocity model).


